Credit: fernandozhiminaicela/pixabay

Moon mission pushed to October, so we wait

So, the Indian Space Research Organisation’s (ISRO’s) Chandrayaan 2 mission to the Moon has been pushed to October from April. Delays of this sort are to be expected for missions of this scale, although I’ve also heard that ISRO often does a poor job of setting realistic launch dates for its missions in general.

The actual launch window for Chandrayaan 2 had been April-November, but recent reports in the media quoting ISRO officials had created the impression that people were confident April would be it.

But now, with the announcement of delay, officials’ confidence on display earlier this year that the launch would happen in April is now in serious question. The most recent media report I can find that quotes a senior official saying Chandrayaan 2 will be launched in April is dated February 16, 2018. The primary Google search result still says “April 2018”.

Screen Shot 2018-03-03 at 20.50.47

I also find it curious that the mission’s delay was announced barely 30 or so days before it was slated to launch instead of much earlier. For missions of this size, delays can be anticipated sooner… unless something unexpected has happened. Has it? No clue. Is it because of the probe itself or the launcher, a GSLV Mk II? Again, no clue.

So we do what we always have: wait.

Mission readiness is one thing but setting realistic launch dates, communicating them to the public in a timely manner and keeping all stakeholders – including the people – informed of the reasons for delay are quite another.

Featured image credit: fernandozhiminaicela/pixabay.

A Falcon 9 lifting off in 2014. Credit: SpaceX

ISRO v. SpaceX doesn’t make sense

Though I’ve never met the guy, I don’t hold Pallava Bagla in very high regard because his stories – particularly of the Indian space programme – for NDTV have often reeked of simplistic concerns, pettiness and, increasingly of late, a nationalistic pride. The most recent instance all these characteristics were put on display was February 12, when NDTV published a 20-minute video of Bagla interviewing K. Sivan, ISRO’s new chairman.

The video is headlined ‘New ISRO Chief Rocket Man Sivan K, A Farmer’s Son, Takes On SpaceX’. What a great story, innit? A farmer’s son taking on SpaceX chief Elon Musk! But if you’re able to stop there and ask a few questions, you’re going to realise that the headline is a load of tosh. First off, the statement that Sivan is a “farmer’s son” is a glancing reference, if not more, to that New York Times cartoon – the implicit jingoism of which we really must get past soon. The national government has been building false narratives around supporting farmers but here we are, valorising the son of one.

Also, referring to Sivan as a “farmer’s son” IMO reduces the man to that one factoid (particularly to serve a narrative Sivan himself may not wish to pursue), as if that’s all we’re going to choose to see about his origins, neglecting what else could have enabled him to succeed the way he has.

Second: ISRO “takes on SpaceX” is a dumb statement. ISRO is a public sector organisation; SpaceX is a private corporation. Their goals are so markedly different that I’m not entirely sure why whoever crafted the headline (not necessarily Bagla) feels ISRO might be threatened by SpaceX’s Falcon Heavy launch (on February 4); I’m less sure why Bagla himself went on to spin his story thus. Case in point: SpaceX is going bigger to be able to take humans to Mars within 10 years; ISRO’s going smaller to help Antrix capitalise on the demand for launching micro and nanosats as well as bigger to launch heavier telecom satellites. Additionally, I know for a fact that ISRO has been cognisant of modularised launch vehicles for at least three years, and this isn’t something Sivan or anyone else has suddenly stopped to consider following the Falcon Heavy launch. The idea’s been around for a bit longer.

All of this is put on show in an exchange about five minutes into the video, as Bagla goes hard at the idea of ISRO possibly lagging behind SpaceX whereas Sivan says (twice) that the PSLV and the Falcon 9 can’t be compared. Transcript:

KS: We can’t compare how much the launch vehicles cost. It depends on the environment in which the manufacturing is realised. I can assure you that our costs are very low because of the way we are manufacturing, the materials we’ve chosen to work with – this way, our costs are always low. But I don’t want to compare because this is always subjective.

PB: But at the same time, we are known for our very low cost missions. For a Falcon 9, they charge about $70 million per launch (ballpark figures) while India did a mission to Mars for roughly the same price. This included the rocket and the satellite, going all the way to Mars. Does that make us feel like we’re very, very competitive in pricing, which is why so many foreign customers are also coming to India?

(ISRO’s Mars Orbiter Mission was a technology demonstrator. The endeavour’s primary mission was to provide a proof of concept of an Indian orbiter at Mars. Second, the satellite’s size and capabilities were both limited by the PSLV’s payload capacity; to wit, MOM’s scientific payload weighed a measly 15 kg whereas the NASA MAVEN, which launched in the same window as MOM, had instruments weighing 65 kg. Third, not many scientific papers have been published on the back of MOM-specific findings. When Bagla says “India did a mission to Mars for roughly the same price” as a single Falcon 9 launch, I also invite him to consider that ISRO has access to cheaper labour than is available in the West and that the MOM launch was noncommercial whereas the Falcon 9 is a rocket developed – and priced – for commerce and profit.)

KS: Foreign customers are coming to India for two reasons. One is, as you said, we’re cost effective – mainly by way of manufacturing and selection of materials. We also make simple rockets. The second reason customers prefer us is the robustness. The reliability of our PSLV is large. When a customer comes to us, they want to make sure there’s a 100% chance their satellite reaches its orbital slot.

PB: So are we cheaper than SpaceX or not?


KS: Again, I don’t want to compare because it is not correct to compare. If the two rockets were made in the same timeframe, in the same place with equivalent amounts of effort, we can compare. But the rockets have been made in different parts of the world, according to different needs. What I can say is that we have a low-cost vehicle.

Almost exactly a year ago, I’d argued the same thing for The Wire, in an article that didn’t go down well with most readers (across the political spectrum). The thrust of it was that the PSLV had been designed from 1977 onwards to launch Indian remote-sensing satellites and that ISRO receives all its funding from the Department of Space. OTOH, SpaceX designed the Falcon 9 to fit prevailing market needs and, though the company receives a lot of money through NASA contracts, its raison d’être as a private entity is to make money by commercialising launch services. Excerpt:

Casting the GSLV, presumably the Mk-III, as a super-soldier in the space-war arena could be misguided. Unlike SpaceX or Arianespace, but much like Roscosmos, ISRO is a state-backed space agency. It has a mandate from the Department of Space to be India’s primary launch-services provider and fulfil the needs of both private entities as well as the government, but government first, at least since that is how policies are currently oriented. This means the GSLV Mk-III has been developed keeping in mind the satellites India currently needs, or at least needs to launch without ISRO having to depend on foreign rockets. …

On the other hand, Arianespace and SpaceX are both almost exclusively market-driven, SpaceX less so because it was set up with the ostensible goal of colonising Mars. Nonetheless, en route to building the Falcon Heavy, the company has built a workhorse of its own in the Falcon 9. And either way, together with Arianespace, it has carved out a sizeable chunk of the satellite-launching market. …

Thus, though Antrix is tasked with maximising profits, ISRO shouldn’t bank on the commercial satellites market because its mix of priorities is more diverse than those of SpaceX or Arianespace. In other words, the point isn’t to belittle ISRO’s launchers but to state that such comparisons might just be pointless because it is a case of apples and oranges.

Sadly for Bagla – and many others like him looking the fools for pushing such a silly idea – our own space programme assumes value only when compared to someone else’s agenda, irrespective of whether the comparison even makes sense. I also wonder if Sivan thinks such are the questions the consumers of NDTV’s journalism want answered – an idea not so farfetched if you consider that not many journalists get access to ISRO’s top brass in the first place – as well as what fraction of the Indian citizenry consumes the success of the Indian space programme simply relative to the successes of others and not as an enterprise established to serve India’s needs first.

Is it so blasphemous to think ISRO ought not to be compared to other space agencies?

ISRO is one of those few public sector organisations in India that actually do well and are (relatively) free of bureaucratic interference. Perhaps it was only a matter of time before we latched on to its success and even started projecting our yearning to be the “world’s best” upon it – whether or not it chose to be in a particular enterprise. I’m not sure if asserting the latter or not affects ISRO (of course not, who am I kidding) but its exposition is a way to understand what ISRO might be thinking, and what might be the best way to interpret and judge its efforts.

So last evening, I wrote and published an article on The Wire titled ‘Apples and Oranges: Why ISRO Rockets Aren’t Comparable to Falcons or Arianes‘. Gist: PSLV/GSLV can’t be compared to the rockets they’re usually compared to (Proton, Falcon 9, Ariane 5) because:

  1. PSLV is low-lift, the three foreign rockets are medium- to -heavy-lift; in fact, each of them can lift at least 1,000 kg more to the GTO than the GSLV Mk-III will be able to
  2. PSLV is cheaper to launch (and probably the Mk-III too) but this is only in terms of the rocket’s cost. The price of launching a kilogram on the rocket is thought to be higher
  3. PSLV and GSLV were both conceived in the 1970s and 1980s to meet India’s demands; they were never built to compete internationally like the Falcon 9 or the Ariane 5
  4. ISRO’s biggest source of income is the Indian government; Arianespace and SpaceX depend on the market and launch contracts from the EU and the US

While spelling out any of these points, never was I thinking that ISRO was inferior to the rest. My goal was to describe a different kind of pride, one that didn’t rest on comparisons but drew its significance from the idea that it was self-fulfilling. This is something I’ve tried to do before as well, for example with one of the ASTROSAT instruments as well as with ASTROSAT itself.

In fact, when discussing #3, it became quite apparent to me (thanks to the books I was quoting from) that comparing PSLV/GSLV with foreign rockets was almost fallacious. The PSLV was born out of a proposal Vikram Sarabhai drew up, before he died in 1970, to launch satellites into polar Sun-synchronous orbits – a need that became acute when ISRO began to develop its first remote-sensing satellites. The GSLV was born when ISRO realised the importance of its multipurpose INSAT satellites and the need to have a homegrown launcher for them.

Twitter, however, disagreed – often vehemently. While there’s no point discussing what the trolls had to say, all of the feedback I received there, as well as on comments on The Wire, seemed intent ISRO would have to be competing with foreign players and that simply was the best. (We moderate comments on The Wire, but in this case, I’m inclined to disapprove even the politely phrased ones because they’re just missing the point.) And this is exactly what I was trying to dispel through my article, so either I haven’t done my job well or there’s no swaying some people as to what ISRO ought to be doing.


We’re not the BPO of the space industry nor is there a higher or lower from where we’re standing. And we don’t get the job done at a lower cost than F9 or A5 because, hey, completely different launch scenarios.


Again, the same mistake. Don’t compare! At this point, I began to wonder if people were simply taking one look at the headline and going “Yay/Ugh, another comparison”. And I’m also pretty sure that this isn’t a social/political-spectrum thing. Quite a few comments I received were from people I know are liberal, progressive, leftist, etc., and they all said what this person ↑ had to say.


Compete? Grab market? What else? Colonise Mars? Send probes to Jupiter? Provide internet to Africa? Save the world?


Now you’re comparing the engines of two different kinds of rockets. Dear tweeter: the PSLV uses alternating solid and liquid fuel motors; the Falcon 9 uses a semi-cryogenic engine (like the SCE-200 ISRO is trying to develop). Do you remember how many failures we’ve had of the cryogenic engine? It’s a complex device to build and operate, so you need to make concessions for it in its first few years of use.


“If [make comparison] why you want comparison?” After I’ve made point by [said comparison]: “Let ISRO do its thing.” Well done.


This tweet was from a friend – who I knew for a fact was also trying to establish that Indian and foreign launchers are incomparable in that they are not meant to be compared. But I think it’s also an example of how the narrative has become skewed, often expressed only in terms of a hierarchy of engineering capabilities and market share, and not in terms of self-fulfilment. And in many other situations, this might have been a simple fact to state. In the one we’re discussing, however, words have become awfully polarised, twisted. Now, it seems, “different” means “crap”, “good” means nothing and “record” means “good”.


Comments like this, representative of a whole bunch of them I received all of last evening, seem tinged with an inferiority complex, that we once launched sounding rockets carried on bicycles and now we’re doing things you – YOU – ought to be jealous of. And if you aren’t, and if you disagree that C37 was a huge deal, off you go with the rocket the next time!


The Times of India even had a cartoon to celebrate the C37 launch: it mocked the New York Times‘s attempt to mock ISRO when the Mars Orbiter Mission injected itself into an orbit around the red planet on September 27, 2014. The NYT cartoon had, in the first place, been a cheap shot; now, TOI is just saying cheap shots are a legitimate way of expressing something. It never was. Moreover, the cartoons also made a mess of what it means to be elite – and disrupted conversations about whether there ought to be such a designation at all.

As for comments on The Wire:


Obviously this is going to get the cut.


As it happens, this one is going to get the cut, too.

I do think the media shares a large chunk of the blame when it comes to how ISRO is perceived. News portals, newspapers, TV channels, etc., have all fed the ISRO hype over the years: here, after all, was a PSU that was performing well, so let’s give it a leg up. In the process, the room for criticising ISRO shrank and has almost completely disappeared today. The organisation has morphed into a beacon of excellence that can do no wrong, attracting jingo-moths to fawn upon its light.

We spared it the criticisms (offered with civility, that is) that would have shaped the people’s perception of the many aspects of a space programme: political, social, cultural, etc. At the same time, it is also an organisation that hasn’t bothered with public outreach much and this works backwards. Media commentaries seem to bounce off its stony edifice with no effect. In all, it’s an interesting space in which to be engaged, as a researcher or even as an enthusiast, but I will say I did like it better when the trolls were not interested in what ISRO was up to.

Featured image credit: dlr_de/Flickr, CC BY 2.0.

The GSLV Mk-III is no jugaad

December 18, 2014

(Note: This piece was written in the future-tense and published before ISRO’s successful test flight this morning.)

Come Thursday, the Indian Space Research Organisation will launch its GSLV Mk-III rocket from its launch pad in Sriharikota. In the run-up, most media attention has been on a conical module the rocket will carry on board. But of greater interest is the rocket itself, which holds the key to making ISRO a serious contender in the international satellite-launch sector.

The module is part of the Crew-Module Atmospheric Reentry Experiment, which will see it being released at an altitude of 126 kilometres, upon which it will re-enter earth’s atmosphere and crash into the Bay of Bengal, some 200 kilometres west of the Andaman Islands.

Scientists at ISRO will monitor CARE during its journey and gather important data about its surface and interiors. If the module’s performance matches their predictions, India will be that much closer to using it as a crew capsule for a manned mission into space planned in the early 2020s.

Cashing in on the growth

Forgotten in the media buzz around the module is the rocket itself.

The Mk-III, a next-generation variant of ISRO’s fleet of geosynchronous satellite launch vehicles, boasts of India’s highest payload capacity yet: 10,000 kilograms to low-earth orbit and 4,000 kilograms to the highly elliptical geostationary-transfer orbit.

If the launch is successful – and if future test flights establish reliability – ISRO’s commercial space programme will be in a position to cash in on the rapidly growing global satellite-launching industry as well as give domestic engineers the leeway to design more sophisticated satellites.

This was an important consideration during the Mars Orbiter Mission. The orbiter itself, currently revolving around the Red Planet, weighs only 15 kilograms because the Polar Satellite Launch Vehicle’s payload limit to earth orbit is 1,350 kilograms. This includes all the other instruments on board to ensure a smooth journey. A heavier orbiter could have included more than the five instruments it did.

Dependence on others

In this regard, the GSLV Mk-III will be important because it will determine where India’s native space research programme is headed and how it plans to leverage the increased payload mass option.

It will also reduce India’s dependence on foreign launch vehicles to get heavier satellites into orbit, although self-reliance comes with problems of its own. The common choice in lieu of a reliable GSLV has been the French Arianespace programme, which currently serves almost 65% of the Asia-Pacific market. The Mk-III bears many structural similarities to the Ariane 6 variant. Also, both rockets have a liquid main-stage, a cryogenic upper-stage and two solid-fuel boosters.

The Ariane 6 can lift 6,500 kilograms to the geostationary-transfer orbit, and each launch costs India about $95 million. Assuming the cost-per-launch of the Mk-III is comparable to the Mk-II’s, the number approximately comes down to $40 million (this is likely to be slightly higher). Compare this to the global average price-per-launch of vehicles capable of reaching the geostationary-transfer orbit: $145.57 million, as of 2013.

Skyrocketing profits

From 1999 to 2014, ISRO launched 40 foreign satellites, all with PSLV rockets, and earned EUR 50.47 million and $17.17 million (or Rs 505.74 crore) from 19 countries. Antrix, the commercial arm of ISRO in charge of handling the contracts with foreign space agencies, has reported profits ranging from Rs 19 crore to Rs 169 crore between 2002 and 2009.

This is a pittance compared to what Arianespace made in 2013 alone: EUR 680.1 million. A reliable launch vehicle to the geostationary-transfer orbit can change this for the better and position ISRO as a serious contender in the space-launch sector, assuming it is accompanied by a more efficient Antrix and an ISRO that is willing to work with foreign counterparts, both private and governmental.

It must also consider expanding its launch capabilities to the geostationary-transfer orbit and prepare to keep up with the 5-15% growth rate recorded in the last five years in the satellites industry. Now is an opportune time, too, to get on the wagon: the agency’s flags are flying high on the success of the Mars Orbiter Mission.

Facing other challenges

ISRO has to be ready to confront the likes of SpaceX, a space transport services company which already has the Falcon 9 rocket that can launch 13,150 kilograms to low-earth orbit and 4,850 kilograms to the geostationary-transfer orbit at starting costs of $57 million per launch.

On another front, ISRO will have to move the public dialogue away from its fixation on big science missions and toward less grandiose but equally significant ones. These will help establish the space agency’s mettle in reliably executing higher-altitude launches, enhancing India’s capabilities in the space-launch and space-research sectors. These will also, in turn, serve to make high-cost missions more meaningful than simple proofs of concepts.

For example, ISRO Chairman K Radhakrishnan has announced that a project report compiled by the agency envisages a Rs 12,400-crore manned space mission by 2021. In the next seven years, thus, ISRO aims to master concepts of re-entry technology, human spaceflight and radiation protection. This will happen not just through repeated test flights and launches of crew modules but also using satellites, space-borne observatories and data analysis.

For all these reasons, the GSLV Mk-III marks an important step by ISRO, one that will expose it to greater competition from European and American launchers, increase its self-reliance in a way that it will have to justify its increasing launch capabilities with well-integrated projects, and help the agency establish a legacy over and beyond the jugaad that took it to Mars.

The Mars Orbiter Mission was launched around the same time as NASA’s MAVEN mission to Mars, and with comparable instrumental specifications. While MOM cost ISRO $74 million, MAVEN cost NASA $672 million. In fact, ISRO’s orbiter was by far the least expensive Mars satellite ever built.