Credit: StockSnap/pixabay

On that Poynter debate about stock images and ethical visual journalism

Response to Mark Johnson, Article about free images ‘contradicts everything I hold true about journalism’, Poynter, February 9, 2018. 

Let’s get the caveats out of the way:

  • The article to which Johnson is responding did get some of its messaging wrong. As Johnson wrote, it suggested the following: “We don’t think about visuals BUT visuals are critically important. The solutions offered amount to scouring the web for royalty-free and (hopefully) copyright-released stock images.”
  • In doing so, the original article may have further diminished prospects for visual journalists in newsrooms around the country (whether the US or India), especially since Poynter is such a well-regarded publisher among editors and since there already aren’t enough jobs available on the visual journalism front.
  • I think visual journalists are important in any newsroom that includes a visual presentation component because they’re particularly qualified to interrogate how journalism can be adapted to multimedia forms and in what circumstances such adaptations can strain or liberate its participants’ moral and ethical positions.

That said, IMO Johnson himself may have missed a bit of the nuances of this issue. Before we go ahead: I’m going to shorten “royalty-free and/or copyright-released” to CC0, which is short for the Creative Commons ‘No Rights Reserved’ license. It allows “scientists, educators, artists and other creators and owners of copyright- or database-protected content to waive those interests in their works and thereby place them as completely as possible in the public domain, so that others may freely build upon, enhance and reuse the works for any purposes without restriction under copyright or database law.” However, what I’m going to say should be true for most other CC licenses (including BY, BY-SA, BY-SA-NC, BY-SA-ND and BY-SA-NC-ND).

By providing an option for publishers to look for CC0 images, the authors of the original piece may have missed an important nuance: publishers come in varying sizes; the bigger the publisher is, the less excusable it is for it to not have a visual journalism department in-house. For smaller (and the smallest) publishers, however, having access to CC0 images is important because (a) producing original images and videos can invoke prohibitive costs and (b) distribution channels of choice such as Facebook and Twitter penalise the absence of images on links shared on these platforms.

Bigger publishers have an option and should, to the extent possible, exercise that option to hire illustrators, designers, video producers and reporters, podcasters, etc. To not do so would be to abdicate professional responsibilities. However, in the interest of leveraging the possibilities afforded by the internet as well as of keeping our news professional but also democratic, it’s not fair to assume that it’s okay to penalise smaller publishers simply because they’re resorting to using CC0 images. A penalty it will be if they don’t: Facebook, for example, will deprioritise their content on people’s feeds. So the message that needs to be broadcast is that it’s okay for smaller publishers to use CC0 images but also that it’s important for them to break away from the practice as they grow.

Second: Johnson writes,

Choosing stock images for news stories is an ethically questionable choice — you don’t know the provenance of the image, you don’t know the conditions under which it was created and you don’t know where else it has been used. It degrades the journalistic integrity of the site. Flip it around — what if there were generic quotes inserted into a story? They wouldn’t advance the narrative at all, they would just act as filler.

He’s absolutely right to equate text and images: they both help tell a story and they should both be treated with equal respect and consequence. (Later in his article, Johnson goes on to suggest visuals may in fact be more consequential because people tend to remember them better.) However, characterising stock images as the journalistic equivalent of blood diamonds is unfair.

For example, it’s not clear what Johnson means by “generic quotes”. Sometimes, some quotes are statements that need to be printed to reflect its author’s official position (or lack thereof). For another, stock images may not be completely specific to a story but they could fit its broader theme, for example, in a quasi-specific way (after all, there are millions of CC0 images to pick from).

But most importantly, the allegations drub the possibilities of the Open Access (OA) movement in the realms of digital knowledge-production and publishing. By saying, “Choosing stock images for news stories is an ethically questionable choice”, Johnson risks offending those who create visual assets and share it with a CC0 license expressly to inject it into the public domain – a process by which those who are starved of resources in one part of the world are not also starved of information produced in another. Journalism shouldn’t – can’t – be free because it includes some well-defined value-adds that need to be paid for. But information (and sometimes knowledge) can be free, especially if those generating them are willing to waive being paid for them.

My go-to example has been The Conversation. Its articles are written by experts with PhDs in the subjects they’re writing about (and are affiliated with reputable institutions). The website is funded by contributions from universities and labs. The affiliations of its contributors and their conflicts of interest, if any, are acknowledged with every article. Best of all, its articles are all available to republish for free under at least a CC BY license. Their content is not of the ‘stock’ variety; their sentences and ideas are not generic. Reusing their articles may not advance the narrative inherent in them but would I say it hurts journalists? No.

Royalty-free and copyright-released images and videos free visual journalists from being involved every step of the way. This is sadly but definitely necessary in circumstances where they might not get paid, where there might not be the room, inclination or expertise necessary to manage and/or work with them, where an audience might not exist that values their work and time.

This is where having, using and contributing to a digital commons can help. Engaging with it is a choice, not a burden. Ignoring those who make this choice to argue that every editor must carefully consider the visual elements of a story together with experts and technicians hired just for this purpose is akin to suggesting that proponents of OA/CC0 content are jeopardising opportunities for visual journalists to leave their mark. This is silly, mostly because it leaves the central agent out of the picture: the publisher.

It’s a publisher’s call to tell a story through just text, just visuals or both. Not stopping to chide those who can hire visual journalists but don’t while insisting “it’s a big part of what we do” doesn’t make sense. Not stopping to help those who opt for text-only because that’s what they can afford doesn’t make sense either.

Featured image credit: StockSnap/pixabay.

Are the papers behind this year's Nobel Prizes in the public domain?

Note: One of my editors thought this post would work for The Wire as well, so it’s been republished there.

“… for the greatest benefit of mankind” – these words are scrawled across a banner that adorns the Nobel Prize’s homepage. They are the words of Alfred Nobel, who instituted the prizes and bequeathed his fortunes to run the foundation that awards them. The words were chosen by the prize’s awarders to denote the significance of their awardees’ accomplishments.

However, the scientific papers that first described these accomplishments in the technical literature are often not available in the public domain. They languish behind paywalls erected by the journals that publish them, that seek to cash in on their importance to the advancement of science. Many of these papers are also funded by public money, but that hasn’t deterred journals and their publishers from keeping the papers out of public reach. How then can they be for the greatest benefit of mankind?


I’ve listed some of the more important papers published by this year’s laureates; they describe work that earned them their respective prizes. Please remember that my choice of papers is selective; where I have found other papers that are fully accessible – or otherwise – I have provided a note. This said, I picked the papers from the scientific background document first and then checked if they were accessible, not the other way round. (If you, whoever you are, are interested in replicating my analysis but more thoroughly, be my guest; I will help you in any way I can.)

A laureate may have published many papers collectively for which he was awarded (this year’s science laureates are all male). I’ve picked the papers most proximate to their citation from the references listed in the ‘advanced scientific background’ section available for each prize on the Nobel Prize website. Among publishers, the worst offender appears – to no one’s surprise – to be Elsevier.

A paper title in green indicates it’s in the public domain; red indicates it isn’t – both on the pages of the journal itself. Some titles in red maybe available in full elsewhere, such as in university archives. The names of laureates in the papers’ citations are underlined.


“for their discoveries of molecular mechanisms controlling the circadian rhythm”

The paywall for papers by Young and Rosbash published in Nature were lifted by the journal on the day their joint Nobel Prize was announced. Until then, they’d been inaccessible to the general public. Interestingly, both papers acknowledge funding grants from the US National Institutes of Health, a tax-funded body of the US government.

Michael Young

Restoration of circadian behavioural rhythms by gene transfer in Drosophila – Nature 312, 752 – 754 (20 December 1984); doi:10.1038/312752a0 link

Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL – Gekakis, N., Saez, L., Delahaye-Brown, A.M., Myers, M.P., Sehgal, A., Young, M.W., and Weitz, C.J. (1995). Science 270, 811–815. link

Michael Rosbash

Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels – Nature 343, 536 – 540 (08 February 1990); doi:10.1038/343536a0 link

The period gene encodes a predominantly nuclear protein in adult Drosophila – Liu, X., Zwiebel, L.J., Hinton, D., Benzer, S., Hall, J.C., and Rosbash, M. (1992). J Neurosci 12, 2735–2744. link

Jeffrey Hall

Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms – Reddy, P., Zehring, W.A., Wheeler, D.A., Pirrotta, V., Hadfield, C., Hall, J.C., and Rosbash, M. (1984). Cell 38, 701–710. link

P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster – Zehring, W.A., Wheeler, D.A., Reddy, P., Konopka, R.J., Kyriacou, C.P., Rosbash, M., and Hall, J.C. (1984). Cell 39, 369–376. link

Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system – Siwicki, K.K., Eastman, C., Petersen, G., Rosbash, M., and Hall, J.C. (1988). Neuron 1, 141–150. link


“for decisive contributions to the LIGO detector and the observation of gravitational waves”

While results from the LIGO detector were published in peer-reviewed journals, the development of the detector itself was supported by personnel and grants from MIT and Caltech. As a result, the Nobel laureates’ more important contributions were published as a reports since archived by the LIGO collaboration and made available in the public domain.

Rainer Weiss

Quarterly progress reportR. Weiss, MIT Research Lab of Electronics 105, 54 (1972) link

The Blue BookR. Weiss, P.R. Saulson, P. Linsay and S. Whitcomb link


“for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”

The journal Cell, in which the chemistry laureates appear to have published many papers, publicised a collection after the Nobel Prize was announced. Most papers in the collection are marked ‘Open Archive’ and are readable in full. However, the papers cited by the Nobel Committee in its scientific background document don’t appear there. I also don’t know whether the papers in the collection available in full were always available in full.

Jacques Dubochet

Cryo-electron microscopy of vitrified specimens – Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A. W., and Schultz, P. (1988). Q. Rev. Biophys. 21, 129-228 link

Vitrification of pure water for electron microscopyDubochet, J., and McDowall, A. W. (1981). J. Microsc. 124, 3-4 link

Cryo-electron microscopy of viruses – Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W. (1984). Nature 308, 32-36 link

Joachim Frank

Averaging of low exposure electron micrographs of non-periodic objectsFrank, J. (1975). Ultramicroscopy 1, 159-162 link

Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli – Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1987). J. Microsc. 146, 113-136 link

SPIDER-A modular software system for electron image processingFrank, J., Shimkin, B., and Dowse, H. (1981). Ultramicroscopy 6, 343-357 link

Richard Henderson

Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopyHenderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990). J. Mol. Biol. 213, 899-929 link

The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological moleculesHenderson, R. (1995). Q. Rev. Biophys. 28, 171-193 link (available in full here)


By locking the red-tagged papers behind a paywall – often impossible to breach because of the fees involved – they’re kept out of hands of less-well-funded institutions and libraries, particularly researchers in countries whose currencies have lower purchasing power. More about this here and here. But the more detestable thing with the papers listed above is that the latest of them (among the reds) was published in 1995, fully 22 years ago, and the earliest, 42 years go – both on cryo-electron microscopy. Both represent almost unforgivable durations across which to have paywalls, with the journals Nature and Cell further attempting to ride the Nobel wave for attention. It’s not clear if the papers they’ve liberated from behind the paywall will always be available for free hence either.

Read all this in the context of the Nobel Prizes not being awarded to more than three people at a time and maybe you’ll see how much of scientific knowledge is truly out of bounds of most of humankind.

Featured image credit: Pexels/pixabay.

No Space Age for us

There’s a 500-word section on the Wikipedia page for the NASA Space Shuttle that describes the markings on the programme’s iconic orbiter vehicle (OV). Specifically, it talks about where the words ‘NASA’ and ‘USA’ appeared on the vehicle’s body, if there were any other markings, as well as some modifications to how the flag was positioned. Small-time trivia-hunters like myself love this sort of thing because, whether in my imagination or writing, being able to recall and describe these markings provides a strong sense of character to the OV, apart from making it more memorable to my readers as well as myself.

These are the symbols in our memories, the emblem of choices that weren’t dictated by engineering requirements but by human wants, ambitions. And it’s important to remember that these signatures exist and even more so to remember them because of what they signify: ownership, belonging, identity.

Then again, the markings on an OV are a part of its visual identity. A majority of humans have not seen the OV take off and land, and there are many of us who can’t remember what that looked like on TV either. For us, the visual identity and its attendant shapes and colours may not be very cathartic – but we are also among those who have consumed information of these fascinating, awe-inspiring vehicles through news articles, podcasts, archival footage, etc., on the internet. There are feelings attached to some vague recollections of a name; we recall feats as well as some kind of character, as if the name belonged to a human. We remember where we were, what we were doing when the first flights of iconic missions took off. We use the triggers of our nostalgia to personalise our histories. Using some symbol or other, we forge a connection and make it ours.

This ourness is precisely what is lost, rather effectively diluted, through the use of bad metaphors, through ignorance and through silence. Great technology and great communication strive in opposite directions: the former is responsible, though in only an insentient and mechanistic way, for underscoring the distance – technological as much as physical – between starlight and the human eye that recognises it; the latter hopes to make us forget that distance. And in the absence of communication, our knowledge becomes clogged with noise and the facile beauty of our machines; without our symbols, we don’t see the imprints of humanity in the night sky but only our loneliness.

Such considerations are far removed from our daily lives. We don’t stop (okay, maybe Dennis Overbye does) to think about what our journalism needs to demand from history-making institutions – such as the Indian Space Research Organisation (ISRO) – apart from the precise details of those important moments. We don’t question the foundations of their glories as much as enquire after the glories themselves. We don’t engender the creation of sanctions against long-term equitable and sustainable growth. We thump our chests when probes are navigated to Mars on a Hollywood budget but we’re not outraged when only one scientific result has come of it. We are gratuitous with our praise even when all we’re processing are second-handed tidbits. We are proud of ISRO’s being removed from bureaucratic interference and, somehow, we are okay with ISRO giving access only to those journalists who have endeared themselves by reproducing press releases for two decades.

There’s no legislation that even says all knowledge generated by ISRO lies in the public domain. Irrespective of it being unlikely that ISRO will pursue legal action against me, I do deserve the right to use ISRO’s findings unto my private ends without anxiety. I’m reminded every once in a while that I, or one of my colleagues, could get into trouble for reusing images of the IRNSS launches from in a didactic video we made at The Wire (or even the image at the top of this piece). At the same time, many of us are proponents of the open access, open science and open knowledge movements.

We remember the multiwavelength astronomy satellite launched in September 2015 as “India’s Hubble” – which only serves to remind us how much smaller the ASTROSAT is than its American counterpart. How many of you know that one of the ASTROSAT instruments is one of the world’s best at studying gamma-ray bursts? We discover, like hungry dogs, ISRO’s first tests of a proto-RLV as “India’s space shuttle”; when, and if, we do have the RLV in 2030, wouldn’t we be thrilled to know that there is something wonderful about it not just of national provenance but of Indian provenance, too?

Instead, what we are beginning to see is that India – with its strapped-on space programme – is emulating its predecessors, reliving jubilations from a previous age. We see that there is no more of an Indianess in them as much as there is an HDR recap of American and Soviet aspirations. Without communication, without the symbols of its progress being bandied about, without pride (and just a little bit of arrogance thrown in), it is becoming increasingly harder through the decades for us – as journalists or otherwise – to lay claim to something, a scrap of paper, a scrap of attitude, that will make a part of the Space Age feel like our own.

At some point, I fear we will miss the starlight for the distance in between.

Update: We are more concerned for our machines than for our dreams. Hardly anyone is helping put together the bigger picture; hardly anyone is taking control of what we will remember, leaving us to pick up on piecemeal details, to piece together a fragmented, disjointed memory of what ISRO used to be. There is no freedom in making up your version of a moment in history. There needs to be more information; there need to be souvenirs and memorabilia; and the onus of making them needs to be not on the consumers of this culture but the producers.

OA shouldn't stop at access

Joseph Esposito argues in the scholarly kitchen why it’s okay for OA articles (which come with a CC-BY license) to be repackaged and then sold for a price by other merchants once they’re out in a paper.

The economic incentive to reach new audiences could make that otherwise OA article into something that gets brought to the attention of more and more readers. What incentive does a pure-play OA publisher have to market the materials it publishes? Unfortunately, the real name of this game is not “Open Access” but “Post and Forget.” Well-designed commerce, in other words, leads to enhanced discovery. And when it doesn’t, it enters the archaeological record.

If we can chase the idealists, ideologues, and moralists out of the temple, we may see that the practical act of providing economic incentives may be able to do more for access than any resolution from Budapest, Bayonne, Bethesda, or Berlin. The market works, and when it doesn’t, things quietly go away. So why all the fuss?

It’s not an argument that’s evident on the face of it, becoming apparent only when you realize OA’s victory march stopped halfway at allowing people to access research papers, not find them. The people who are good to helping other people find stuff are actually taking the trouble to market their wares.

So Esposito’s essentially argued to leave in a “finding fee” where it exists because there’s a big difference between something just being there in the public domain and something being found. I thought I’d disagree with the consequences of this reasoning for OA but I largely don’t.

Where I stop short is where this permission to sell papers available for free infringes on the ideals of OA for no fault of the principle of OA. But then what can OA do about that?

Read: Getting Beyond “Post and Forget” Open Access, the scholarly kitchen

India's OA policy: Learning from Ioannidis

India’s first Open Access policy was drafted by a committee affiliated with the Departments of Biotechnology and Science & Technology (DBT/DST) in early 2014. It hasn’t been implemented yet. Its first draft accepted comments on its form and function on the DBT website until July 25; the second draft was released last week and is open for comments until November 17, 2014. If it comes into effect, it could really expand the prevalence of healthy research practices in the Indian scientific community at a time when the rest of the world is handicapped by economies of scale and complexity to mandate their practice.

The policy aspires to set up a national Open Access repository, akin to PubMed for biomedical sciences and arXiv for physical sciences in the West, that will maintain copies of all research funded in part or in full by DBT/DST grants. And in the spirit of Open Access publishing, its contents will be fully accessible free of charge.

According to the policy, if a scientist applies for a grant, he/she must provide proof that previous research conducted with grants has been uploaded to the repository, and the respective grant IDs must be mentioned in the uploads. Moreover, the policy also requires institutions to set up their own institutional repositories, and asks that the contents of all institutional repositories be interoperable.

The benefits of such an installation are many and great. It would solve a host of problems that are starting to become more intricately interconnected and giving rise to a veritable Gordian knot of stakeholder dynamics. A relatively smaller research community in India can avoid this by implementing a few measures, including the policy.

For one, calls for restructuring the Indian academic hierarchy have already been made. Here, even university faculty appointments are not transparent. The promotion of scientists with mediocre research outputs to top administrative positions stifles better leaders who’ve gone unnoticed, and their protracted tenancy at the helm often stifles new initiatives. As a result, much of scientific research has become the handmaiden of defence research, if not profitability. In the biomedical sector, for example, stakeholders desire reproducible results to determine profitable drug targets but become loth to share data from subsequent stages of the product development cycle because of their investments.

There is also a bottleneck between laboratory prototyping and mass production in the physical sciences because private sector participation has been held at bay by concordats between Indian ministries. In fact, a DST report from 2013 concedes that the government would like to achieve 50-50 investment from private and public sectors only by 2017, while the global norm is already 66-34 in favour of private.

In fact, these concerns have been repeatedly raised by John Ioannidis, the epidemiologist whose landmark paper in 2005 about the unreliability of most published medical findings set off a wave of concern about the efficiency of scientific research worldwide. It criticized scientists’ favouring positive, impactful results even where none could exist in order to secure funding, etc. In doing so, however, they skewed medical literature to paint a more revolutionary picture than prevailed in real life, and wasted an estimated 85% of research resources in the process.

Ioannidis’s paper was provocative not because it proclaimed the uselessness of a lot of medical results but because it exposed the various mechanisms through which researchers could persuade the scientific method to yield more favourable ones.

He has a ‘sequel’ paper published on the 10th anniversary of the Open Access journal PLOS Med on October 19. In this, he goes beyond specific problems – such as small sample sizes, reliance on outdated statistical measures, flexibility in research design, etc. – to showcase what disorganized research can do to undermine itself. The narrative will help scientists and administrators alike design more efficient research methods, and so also help catalyse the broad-scale adoption of some practices that have until now been viewed as desirable only for this or that research area. For India, implementing its Open Access policy could be the first step in this direction.

Making published results – those funded in part or fully by DBT/DST grants – freely accessible has been known to engender practices like post-publication peer-review and sharing of data. Peer-review is the process of getting a paper vetted by a group of experts before publication in a journal. Doing that post-publication is to invite constructive criticism from a wider group of researchers as well as exposing the experimental procedures and statistical analyses. This in turn inculcates a culture of replication – where researchers repeat others’ experiments to see if they can reach the same conclusions – that reduces the prevalence of bias and makes scientific research as a whole more efficient.

Furthermore, requiring multiple institutional repositories to be interoperable will spur the development of standardised definitions and data-sharing protocols. It will also lend itself to effective data-mining for purposes of scientometrics and science communication. In fact, the text and metadata harvester described in the policy is already operational.

Registration of experiments, which is the practice of formally notifying an authority that you’re going to perform an experiment, is also a happy side-effect of having a national Open Access repository because it makes public funds more tractable, which Ioannidis emphasizes on. By declaring sources of funding, scientists automatically register their experiments. This could siphon as-yet invisible null and negative results to the surface.

A Stanford University research team reported in August 2014 that almost 67% of experiments (funded by the National Science Foundation, USA) that yielded null results don’t see the light of day while only 21% of those sent to journals are published. Contrarily, 96% of papers with strong, positive results are read and 62% are published. As a result, without prior registration of experiments, details of how public funds are used for research can be distorted, detrimental to a country that actually requires more oversight.

It is definitely foolish to assume one policy can be panacea. Ioannidis’s proposed interventions cover a range of problems in research practices, and they are all difficult to implement at once – even though they ought to be. But to have a part of the solution capable of reforming the evaluation system in ways considered beneficial for the credibility of scientific research but delaying its implementation will be more foolish. Even if the Open Access policy can’t acknowledge institutional nepotism or the hypocrisy of data-sharing in biomedical research, it provides an integrated mechanism to deal with the rest. It helps adopt common definitions and standards; promotes data-sharing and creates incentives for it; and emphasizes the delivery of reproducible results.

Second draft of India's OA policy open for comments

The second draft of India’s first Open Access policy is up on the Department of Biotechnology (DBT) website. Until November 17, 2014, DBT Adviser Mr. Madhan Mohan will receive comments on the policy’s form and function, after which a course for implementation will be charted. The Bangalore-based Center for Internet and Society (CIS), a non-profit research unit, announced the update on its website while also highlighting some instructive differences between the first the second drafts of the policy.

The updated policy makes it clear that it isn’t concerned about tackling the academic community’s prevalent yet questionable reliance on quantitative metrics like impact-factors for evaluating scientists’ performance. Prof. Subbiah Arunachalam, one of the members of the committee that drafted the policy, had already said as much in August this year to this blogger.

The draft also says that it will not “underwrite article-processing charges” that some publishers charge to make articles available Open Access. The Elsevier Publishing group, which publishes 25 journals in India, has asked for a clarification on this.

Adhering to the policy’s mandates means scientists who have published a paper made possible by Departments of Biotechnology and Science & Technology should deposit that paper in an Open Access repository maintained either by the government or the institution they’re affiliated with.

They must do so within two weeks of the paper being accepted for publication. If the publisher has instituted an embargo period, then the paper will be made available on the repository after the embargo lifts. CIS, which advised the committee, has recommended that this period not exceed one year.

As of now, according to the draft, “Papers resulting from funds received from the fiscal year 2012-13 onwards are required to be deposited.” A footnote in the draft says that papers under embargo can still be viewed by individuals if the papers’ authors permit it.

The DBT repository is available here, and the DST repository here. All institutional repositories will be available as sub-domains on (e.g.,, while the domain itself will lead to the text and metadata harvester.

The drafting committee also intends to inculcate a healthier Open Access culture in the country. It writes in the draft that “Every year each DBT and DST institute will celebrate “Open Access Day” during the International Open Access Week by organizing sensitizing lectures, programmes, workshops and taking new OA initiatives.”

Following up on the DBT/DST OA policy

Earlier in July, a group of people working with the Departments of Biotechnology and Science & Technology (DBT/DST) of the Government of India had drafted an open access policy covering research funded by federal grants, and mandating their availability in a national repository.

The move was lauded because it meant Indian academia was finally making an attempt to embrace open access publishing, as well as making research labs more tractable and accountable about how they spent the people’s money. However, there was some ambiguity about whether the policy would address the issue of scientists typically preferring to publish their work in high impact factor journals, and the tendency to evaluate them on the basis of that number.

There were also questions about who would pay for maintaining the national OA repository as well as the institutional repositories, how it would address institutional reluctance, and if “glamorous” journals like Nature, Cell and Science – which prohibit self-archiving of published papers – would support DBT/DST.

Last week, I met Prof. Subbiah Arunachalam, one of the people on the committee that drafted the policy, and asked him about the policy’s exact goals. He then spoke at length about the its origins and what it would and wouldn’t do.

For starters, he said that the policy will negate institutional reluctance by requiring all scientists applying for federal grants to submit the ID of their previous papers in the OA repository. It will also allow only the Government of India to keep track of and evaluate the research and the scientists it funds.

On the other hand, it won’t address scientists’ preference for high impact factor journals (such as Nature, Cell and Science), and it definitely won’t interfere with how institutions choose to evaluate their scientists – at least for now. In effect, the policy is a purely people-facing gesture and not a solution to any of the other problems facing the Indian research community, and it’s doubtful what it will do to check institutional nepotism.

The drafting committee is now looking for comments, suggestions and other feedback on the document, while waiting for a go-ahead from a government that is likely to take its time.

The policy draft does mention that the DBT/DST will maintain the repository, but Prof. Arunachalam couldn’t speak about the institutional repositories. In fact, he said that concern was farther in the future than getting those journals prohibiting self-archiving to make an exception for India’s scientists, and if they don’t, to allow pre-prints of the respective papers.

The eventual goal would be to set up a queriable database of citations, along the lines of PubMed but encompassing not just medical or biological literature but also for physics, he added.

Draft policy on increasing access to DBT/DST research

An Open Access Policy Committee has drafted a policy to enhance access to publicly funded research by setting up a national open access (OA) repository under the oversight of the Department of Biotechnology (DBT) and the Department of Science and Technology (DST). Reproduced in full here:

This is a very good move that that will highlight what OA can do to spur scientific research and science communication in the country. It will also

  • foster a “richer research culture” as the draft says,
  • increase accountability and tractability of public funds and the research it sponsors, and
  • make the process of resource selection/allocation more transparent.

Some quick points:

  1. Accountability of DBT/DST-controlled research by mandating uploaded papers to mention grant ID.
  2. Papers should be deposited in OA repositories once accepted by a journal, but OA will be enabled only when embargo lifts. So maybe the DBT/DST OA repositories will be like a national pre-print server – but depends on the nature of the embargo
  3. The paper (pre-print?) will be OA whether or not the journal is OA. Moreover, “Publisher agrees to provide to Author within 14 days of first publication and at no charge an electronic copy of the published Article in a format … that preserves final page layout, formatting, and content. No technical restriction, such as security settings, will be imposed to prevent copying or printing of the document. ” What if highly profitable non-OA journals based outside the country (which researchers aspire to publish in to secure advantages in non-DBT/DST settings) disagree?
  4. An author who cannot furnish his/her publication ID will not be considered for promotions, fellowships, research grants, etc., if his/her institution is under the administrative control of DBT/DST. On the other hand, how will conflicts of interest/nepotism be prevented in this regard?
  5. The DBT/DST will bear the cost of maintaining the central repository, which should eliminate conflicts of interest arising from payment-for-publication. Will the DBT/DST help set up institutional repositories? Since these IRs have to be “interoperable”, what are the standards the administration has in mind?
  6. What about research that is funded by private parties? What fraction of research funding should the DBT/DST bear for the paper to be mandatorily deposited in an OA repository?