Tag Archives: ISRO

Source: YouTube

Feroze Varun Gandhi’s innovative prescriptions for Indian S&T

Where Feroze Varun Gandhi writes about “forging a culture of innovation” in India:

We need to push beyond metrics, papers and patents to focus on providing solutions to development and economic challenges. A focus on building an innovation culture is necessary, particularly giving the transformative shifts under way in sectors critical to India’s economy — from electric cars in automobiles to insourcing in IT services, the economy is exposed to significant job losses and a fall in exports over the coming decade. Our innovation policy has to shift beyond a focus on increasing R&D spending to inculcating a mindset of “out-of-the-box” thinking in our universities, start-ups and corporates. India’s educational policies need to be redesigned, with a focus on building cognitive abilities, beyond rote learning and focus on quantitative subjects.

Dear minister, did you speak to a scientist before writing this? (Alternatively, did your ghost-writer speak to a scientist before writing this?) K. VijayRaghavan was just appointed PSA; I’m sure he’d have been happy to take your call.

Because I’m getting tired of pieces in this template, where authors drop a bunch of numbers we’re so familiar with that many of us have memorised it, and just keep saying “India needs to do better science and better tech”.

In fact, I doubt Feroze Varun Gandhi even wrote this piece. It’s quite easy to write because it offers no new information, no new perspectives and no new insights. Obviously India needs to be better. We all already know that.

So what is this piece about? It’s FVG putting on display the fact that he too can write about science and tech. It’s FVG putting on display that he can think rationally about science and tech spending, irrespective of his party’s often-stupid claims. It’s essentially FVG saying #notallpoliticians.

But as a Bharatiya Janata Party MP, what’s expected of him if he’s going to write about science is something else. It’s about nitty gritties (tell me something I don’t know!), about what he’s doing to change his party’s mindset about “ancient India”, about his efforts to participate in policymaking in science, translational research, tech and research-funding.

But none of these items feature in his piece. Instead, FVG seems content about drawing comparisons to South Korea and the US, quoting from their budget reports, and drawing B-grade parallels to a country whose uniqueness our leaders often like drawing attention to.

By disregarding this uniqueness – of research culture, traditional knowledge, etc. – when talking about scientific research and technological development, people like FVG betray their failure in understanding that scientists are people, too. By ignoring the cultural and political contexts they negotiate, FVG assumes that Indian scientists are simply not thinking hard enough, out of the box enough, etc.

Most of FVG’s piece focuses on downstream activities; when it does turn upstream, it’s only to talk about R&D spending (itself a nebulaic description) or improving “cognitive abilities”. I predict his next oped is going to be about eradicating tuberculosis by 2025, with the following keywords: MDR TB, XDR TB, masks, vaccines, private healthcare and medical insurance. After that, I suspect it’s going to be nuclear fusion.

There’s not a line in FVG’s piece about

  1. Facilitating collaborations
  2. Addressing a monumental language barrier
  3. Women, transgender people and LGBTQIA+ scientists
  4. School students
  5. Reforming grant-disbursal
  6. University autonomy
  7. Preserving safe spaces for intellectual discourse
  8. Research ethics
  9. Setting up schemes on a consultative basis
  10. Making government bodies transparent

Also, science is not divorced from the social sciences. Assuming (wrongly) for a moment that science is neutral and reflexive on short timescales, technology is inherently political. It’s going to create new jobs but get rid of older ones; it’s going to divert resources, redistribute value and require new regulation. A government has to deal with such changes through affirmative action, protecting the livelihoods of the underprivileged and the rights of all its citizens.

If genetically modified crops – a powerful example of the “new technologies” that FVG mentions – haven’t been adopted in India even though scientists are clear that they’re safe, it’s because the government has disenfranchised farmers in the past, slipped up on crop insurance and fixing sale prices, treated public resource management with kid gloves, kept genetic testing data out of the public domain and dealt with agricultural distress according to what will win them a nearby election.

The effects of such botch-ups will be felt upstream, the place that FVG is looking at as if it were an eclipse. Recently, Devang Mehta, a biologist at ETH Zurich, recently wrote a moving piece for Massive about how he was quitting GMO studies because he – like many of his peers – never agreed to put up with the acerbic activism against the technology. IMO, such acerbity is necessary to deal with the Government of India.

Seriously, let’s get over the “numbers are the problem” routine. As a Member of Parliament, FVG doesn’t get to throw his hands up in the air and say, “Here are the numbers, and this is what we need to fix.” There’s a cultural crisis underway in India’s educational and research institutions. Admittedly, it’s a lot of information to process and opine about. If FVG can’t talk about them, he should just not.

It’s perfectly fine. For every moronic utterance that ancient India invented everything, another minister’s silence is worth volumes. It’s a low bar but I’m sure the more cynical among us will take it. It’s obviously important to keep conversations about science and research going in the public domain, but an overwhelming number of those in power appear to be stuck at simply acknowledging a bird’s eye view of our research and development woes, and never really getting into the thick of it.

What’s worse is opeds like FVG’s are taken to be some kind of expression of commitment when they’re not. “Fixing” science is an arguably riskier, stinkier task than “fixing” most other sectors because of the ubiquitous, but eminently fixable, cluelessness. Every new oped that advertises such cluelessness by sticking to the data that FVG has is a proclamation that the author doesn’t give a damn. If the author had, this wouldn’t be the piece they’d be writing.

If this piece had been pitched to me, I’d have rejected it for the reasons above and because publishing it would’ve given the impression that politicians care. They don’t care – not if this oped is anything to go by. It’s a puff piece. My suggestion is to drop the incessant oped-writing and pay attention to the ‘March for Science’ on April 14.

Featured image: Varun Gandhi. Source: YouTube.

Credit: skeeze/pixabay

Going beyond ‘fake news = wrong facts’

Just as there’s no merit in writing a piece that is confused and incomplete, there’s no merit in digging through a dumpster and complaining that there’s trash. However, that doesn’t mean that it doesn’t hurt when The Quint publishes something as ass-backwards as this article, titled ‘SpaceX or ISRO, Who’s Winning the Race to Space?’, in a time when finally, at long fucking last, people are beginning to wake up to the idea that ISRO’s and SpaceX’s responsibilities are just different.

In fact, the author of this article seems (temporarily) aware of this distinction, writing, “You have to understand, both ISRO and SpaceX are different entities with different resources at their disposal and ultimately different goals”, even as he makes the comparison anyway. This is immature, irresponsible journalism (if that), worse than the Sisyphean he-said-she-said variety if only because the ‘he’ in this case is the author himself.

But more importantly, against the backdrop of the I&B ministry’s guidelines on combating fake news that were released, and then retracted, earlier today, I briefly wondered whether this Quint piece could be considered fake news. A friend quickly disabused me of the idea by pointing out that this isn’t exactly news, doesn’t contain factual mistakes and doesn’t seem to have malicious intent – all valid points. However, I’m still not sure I agree… My reasons:

1. News is information that is new, contemporary and in the public interest. While the last two parameters can be defined somewhat objectively, novelty can and is frequently subjective. Often, it also extends to certain demographic groups within a population, such as readers of the 18-24 age group, for whom a bit of information that’s old for others is new.

2. The article doesn’t contain factual mistakes but the relationships the author defines between various facts are wrong and untrue. There are also assumptions made in the article (dissected below) that make the author sound stupid more than anything else. One does have the freedom of expression but journalists and publishers also have a responsibility to be… well, responsible.

3. You can make rational decisions only when you know everything there is to know apropos said decisions. So when you deliberately ignore certain details that would render an argument meaningless just so you can make the argument yourself, that’s malice. Especially when you then click the ‘publish’ button and watch as a clump of irrational clutch of sememes reaches 19,000 people in 18 hours.

So to me, this article is fake news.

Here’s another locus: according to Dictionary.com, fake news is

false news stories, often of a sensational nature, created to be widely shared online for the purpose of generating ad revenue via web traffic or discrediting a public figure, political movement, company, etc.

The Quint article is sensational. It claims ISRO and SpaceX can’t be compared but goes on to make the comparison anyway. Why? Traffic, visibility and revenue (through ads on The Quint‘s pages). It’s textual faff that wastes the reader’s time, forces others to spend time correcting the irrational beliefs that will take root in people’s minds as a result of reading the article, and it’s just asinine of The Quint to lend itself as a platform for such endeavours. It’s the sort of thing we frequently blame the male protagonists in Indian films for: spending 150 minutes realising his mistakes.

But again, I do apologise for whining that there’s trash in the dumpster. (Aside: A recent headline in Esquire had just the term for journalism-done-bad – ‘trash avalanche’.)

§

I must dissect the article. It’s an addiction!

India’s premier space agency Indian Space Research Organisation (ISRO) has built a reputation for launching rockets into space at very convenient prices. The consequent effect?

A lot of customers from around the world have come flocking to avail India’s economical rocket-launching services and this has helped the country make some extra bucks from its space exploration program.

Extra bucks, eh?

However, it’s a pretty competitive space.

Elon Musk’s SpaceX has had a decent run in the past couple of days and the recent successful launch of the Falcon Heavy rocket has paved the way for launching heavy satellites into space.

You don’t say…

SpaceX and ISRO are competitors of sorts in the business of commercial satellite launches. The question is, how big of a threat is SpaceX to India’s space agency?

Wrong + 🚩

Okay, first some facts.

That’s kind of you.

ISRO is an experienced campaigner in the field of space exploration as it’s been launching rockets into space since as early as 1975. From sending India’s first satellite into space (Aryabhata), to successfully launching some of the most historic missions like Chandrayaan-1 (2008) and Mangalyaan (2013), ISRO has done it all.

You should check out some of the stuff NASA, JAXA and ESA have done. ISRO really hasn’t done it all – and neither have NASA, JAXA and ESA.

ISRO has carried out a total of 96 spacecraft missions, which involve 66 launch missions.

Apart from the above, it has various other goals, ranging from maintaining the communication satellite constellation around the Earth to sending manned missions into space. Not easy by any means.

Not easy to have goals? Have you seen the todo lists of most people?

Meanwhile, SpaceX is the new kid on the block and really isn’t a big space exploration agency (at least not as big as ISRO).

That’s a comparison 🚩

SpaceX was founded in 2002 by maverick entrepreneur Elon Musk with an aim to provide economically efficient ways to launch satellites and also colonise Mars!
Overall, since SpaceX’s first mission in June, 2010, rockets from the Falcon 9 family have been launched 51 times, out of which 49 have been successful. That’s a 96 percent success rate!

So, in terms of experience, SpaceX still has some catching up to do. But in terms of success rate, it’s tough to beat at 96 percent.

Do you know that if I launch one rocket successfully, I’ll have a success rate of 100%?

SpaceX is a privately-owned enterprise and is funded by big companies like Google and Fidelity. According to a Forbes, SpaceX is valued at more than $20 billion (Rs 13.035 crore) as of December 2017.

That’s Rs 1.3 lakh crore, not Rs 13.035 crore.

ISRO on the other hand is a state-owned entity and is run and controlled by the Government of India. Each year, the agency is allocated a certain part of the nation’s budget. For the year 2018-19, the Centre has allocated Rs 8,936 crore to the space organisation.

There is also a big difference in terms of cost per mission. For example, the Falcon 9 launch vehicle’s cost per launch comes up to $62 million, while ISRO’s Polar Satellite Launch Vehicle (PSLV) costs roughly $15 million per launch.

You’re comparing the mission costs of one rocket that can carry 10,000+ kg to the LEO to a rocket that can carry 3,800 kg to the LEO. Obviously the former is going to be costlier!

The size of the payloads are different as the Falcon 9 carries much heavier bulk than India’s rockets.

Dear author: please mention that this fact renders the comparison in your previous line meaningless. At least refrain from using terms like “big difference”.

Currently, India makes very less on commercial missions as most of them carry small or nano-satellites. Between 2013 and 2015, ISRO charged an average of $3 million per satellite. That’s peanuts compared to a SpaceX launch, which costs $60 million.

First: Antrix, not ISRO, charges $3 million per satellite. Second: By not discussing payload mass and orbital injection specifications, the author’s withholding information that will make this “peanuts” juxtaposition illogical. Third: ISRO and SpaceX operate out of different economies – a point that incumbent ISRO chairman K. Sivan has emphasised – leading to different costing (e.g. have you considered labour cost?). Finally, source of data?

According to a 2016 report, India’s premier space agency earned a revenue of around Rs 230 crore through commercial launch services, which is about 0.6 percent of the global launch services market.

India is still to make big ‘moolah’ from their launches as small satellites don’t pull in a lot of money as compared to bigger ones.

That last bit – does the Department of Space know you’re feeling this way? Because if they did, they might not go ahead with building the Small Satellite Launch Vehicle (SSLV). So that’s another 🚩

Despite the fact that ISRO is considered competition for Elon Musk’s SpaceX in the business of commercial satellite launches,

Although this claim is bandied about in the press, I doubt it’s true given the differences in payload capacities, costs to space and launch frequencies of the PSLV/GSLV and the Falcon 9.

he doesn’t shy away from acknowledging how he is “impressed” by India’s frugal methods of conducting successful launch missions.

Is this a big deal? Or are you awed that India’s efforts are being lauded by a white man of the west?

Last year in February, India launched 104 satellites into space using a single rocket, which really caught Musk’s attention. This is a world record that India holds till date.

If that’s not impressive enough, India also launched it’s Mars probe (Mangalyaan) in 2014 which cost less than what it cost to make the Hollywood movie “The Martian”. Ironical?

It’s not “impressive enough”. It’s not ironic.

You have to understand, both ISRO and SpaceX are different entities with different resources at their disposal and ultimately different goals. But again, if Musk is impressed, it means ISRO has hit it out of the park.

But if Musk hadn’t been impressed, then ISRO would’ve continued to be a failure in your eyes, of course.

I am not going to pick a winner because of a lot of reasons. One of them is that I like both of them.

ISRO and SpaceX must both be so relieved.

SpaceX is a 15-year-old company, which has made heavy-lift reusable launch vehicle, while ISRO is a 40-year-old organisation making inroads into the medium-lift category; Not to mention it also has a billion other things to take care of (including working on reusable rockets).

Since the objective of both these organisations is to make frugal space missions possible, it’s no doubt that ISRO has the lead in this race.

How exactly? 🤔 Also, if we shouldn’t be comparing ISRO and SpaceX, how’re they in the same race?

Yes, there is a lot that SpaceX can learn from what India has achieved till now, but that can work both ways, considering the technology SpaceX is using is much more advanced. But in the end one cannot deny the fact that SpaceX is all about launching rockets and getting them back to Earth in one piece, not making satellites.

Featured image credit: skeeze/pixabay.

The Moon impact probe that went up on the PSLV C11 mission along with Chandrayaan 1. Credit: ISRO

For space, frugality is a harmful aspiration

Ref:

‘ISRO’s Chandrayaan-2 mission to cost lesser than Hollywood movie Interstellar – here’s how they make it cost-effective’, staff, Moneycontrol, February 20, 2018. 

‘Chandrayaan-2 mission cheaper than Hollywood film Interstellar’, Surendra Singh, Times of India, February 20, 2018. 

The following statements from the Moneycontrol and Times of India articles have no meaning:

  1. The cost of ISRO’s Mars Orbiter Mission was less than the production cost of the film Gravity.
  2. The cost of ISRO’s Chandrayaan 2 mission is expected to be less than the production cost of the film Interstellar.

It’s like saying the angular momentum of a frog is lower than the speed of light. “But of course,” you’re going to say, “we’re comparing angular momentum to speed – they have different dimensions”. Well, the production cost of a film and mission costs also have different dimensions if you cared to look beyond the ‘$’ prefix. That’s because you can’t just pick up two dollar figures, decide which one’s lower and feel good about that without any social and economic context.

For example, what explains the choice of films to compare mission costs to? Is it because Gravity and Interstellar were both set in space? Is it because both films are fairly famous? Is it also because both films were released recently? Or is it because they offered convenient numbers? It’s probably the last one because there’s no reason otherwise to have picked these two films over, say, After Earth, Elysium, The Martian, Independence Day: Resurgence or Alien: Covenant – all of which were set in space AND cost less to make than Interstellar.

So I suspect it would be equally fair to say that the cost of C’yaan 2 is more than the budget of After Earth, Elysium, The Martian, Independence Day: Resurgence or Alien: Covenant. But few are going to spin it like this because of two reasons:

  1. The cost of anything has to be a rational, positive number, so saying cost(Y) is less than cost(X) would imply that cost(X) > cost(Y) ≥ 0; however, saying cost(Y) is greater than cost(X) doesn’t give us any real sense of what cost(Y) could be because it could approach ∞ or…
  2. Make cost (Y) feel like it’s gigantic, often because your reader assumes cost(Y) should be compared to cost(X) simply because you’ve done so

Now, what comparing C’yaan 2’s cost to that of making Interstellar achieves very well is a sense of the magnitude of the number involved. It’s an excellent associative mnemonic that will likely ensure you don’t forget how much C’yaan 2 cost – except you’d also have to know how much Interstellar cost. Without this bit of the statement, you have one equation and two variables, a.k.a. an unsolvable problem.

Additionally, journalists don’t use such comparisons in other beats. For example, when the Union budget was announced on February 1 this year, nobody was comparing anything to the production costs of assets that had a high cultural cachet. Rs 12.5 crore was Rs 12.5 crore; it was not framed as “India spends less on annual scholarships for students with disabilities than it cost to make Kabali“.

This suggests that such comparisons are reserved by some journalists for matters of space, which in turn raises the possibility that those journalists, and their bosses, organisations and readers, are prompted to think of costs in the space sector as something that must always be brought down. This is where this belief becomes pernicious: it assumes a life of its own. It shouldn’t. Lowering costs becomes a priority only after scientists and engineers have checked tens, possibly hundreds, of other boxes. Using only dollar figures to represent this effort mischaracterises it as simply being an exercise in cost reduction.

So, (risking repetition:) comparing a mission cost to a movie budget tells us absolutely nothing of meaning or value. Thanks to how Moneycontrol’s phrased it, all I know now is that C’yaan 2 is going to cost less than $165 million to make. Why not just say that and walk away? (While one could compare $165 million to mission costs at other space agencies, ISRO chief K. Sivan has advised against it; if one wants to compare it to other PSUs in India, I would advise against it.) The need to bring Interstellar into this, of course, is because we’ve got to show up the West.

And once we’re done showing up the West, we still have to keep. Showing up. The West. Because we’re obsessed with what white people do in first-world countries. If we didn’t have them to show up, who knows, we’d have framed ISRO news differently already because we’d have been able to see $165 million for what it is: a dimensionless number beyond the ‘$’ prefix. Without any other details about C’yaan 2 itself, it’s pretty fucking meaningless.

Please don’t celebrate frugality. It’s an unbecoming tag for any space programme. ISRO may have been successful in keeping costs down but, in the long run, the numbers will definitely go up. Frugality is a harmful aspiration vis-à-vis a sector banking on reliability and redundancy. And for fuck’s sake, never compare: the act of it creates just the wrong ideas about what space agencies are doing, what they’re supposed to be doing and how they’re doing it. For example, consider Sivan’s answer when asked by a Times of India reporter as to how ISRO kept its costs down:

Simplifying the system, miniaturising the complex big system, strict quality control and maximising output from a product, make the missions of Indian space agency cost-effective. We keep strict vigil on each and every stage of development of a spacecraft or a rocket and, therefore, we are able to avoid wastage of products, which helps us minimise the mission cost.

If I didn’t know Sivan was saying this, I’d have thought it was techno-managerial babble from Dilbert (maybe with the exception of QC). More importantly, Sivan doesn’t say here what ISRO is doing differently from other space agencies (such as, say, accessing cheaper labour), which is what would matter when you’re rearing to go “neener neener” at NASA/ESA, but sticks to talking about what everyone already does. Do you think NASA and ESA waste products? Do they not remain vigilant during each and every stage of development? Do they not have robust QC standards and enforcement regimes?

Notice here that Sivan isn’t saying “we’re doing it cheaper than others”, only that doing these things keeps the space agency “cost-effective”. Cost-effective is not the same as frugal.

Featured image: The Moon impact probe that went up on the PSLV C11 mission along with Chandrayaan 1. Credit: ISRO.

A Falcon 9 lifting off in 2014. Credit: SpaceX

ISRO v. SpaceX doesn’t make sense

Though I’ve never met the guy, I don’t hold Pallava Bagla in very high regard because his stories – particularly of the Indian space programme – for NDTV have often reeked of simplistic concerns, pettiness and, increasingly of late, a nationalistic pride. The most recent instance all these characteristics were put on display was February 12, when NDTV published a 20-minute video of Bagla interviewing K. Sivan, ISRO’s new chairman.

The video is headlined ‘New ISRO Chief Rocket Man Sivan K, A Farmer’s Son, Takes On SpaceX’. What a great story, innit? A farmer’s son taking on SpaceX chief Elon Musk! But if you’re able to stop there and ask a few questions, you’re going to realise that the headline is a load of tosh. First off, the statement that Sivan is a “farmer’s son” is a glancing reference, if not more, to that New York Times cartoon – the implicit jingoism of which we really must get past soon. The national government has been building false narratives around supporting farmers but here we are, valorising the son of one.

Also, referring to Sivan as a “farmer’s son” IMO reduces the man to that one factoid (particularly to serve a narrative Sivan himself may not wish to pursue), as if that’s all we’re going to choose to see about his origins, neglecting what else could have enabled him to succeed the way he has.

Second: ISRO “takes on SpaceX” is a dumb statement. ISRO is a public sector organisation; SpaceX is a private corporation. Their goals are so markedly different that I’m not entirely sure why whoever crafted the headline (not necessarily Bagla) feels ISRO might be threatened by SpaceX’s Falcon Heavy launch (on February 4); I’m less sure why Bagla himself went on to spin his story thus. Case in point: SpaceX is going bigger to be able to take humans to Mars within 10 years; ISRO’s going smaller to help Antrix capitalise on the demand for launching micro and nanosats as well as bigger to launch heavier telecom satellites. Additionally, I know for a fact that ISRO has been cognisant of modularised launch vehicles for at least three years, and this isn’t something Sivan or anyone else has suddenly stopped to consider following the Falcon Heavy launch. The idea’s been around for a bit longer.

All of this is put on show in an exchange about five minutes into the video, as Bagla goes hard at the idea of ISRO possibly lagging behind SpaceX whereas Sivan says (twice) that the PSLV and the Falcon 9 can’t be compared. Transcript:

KS: We can’t compare how much the launch vehicles cost. It depends on the environment in which the manufacturing is realised. I can assure you that our costs are very low because of the way we are manufacturing, the materials we’ve chosen to work with – this way, our costs are always low. But I don’t want to compare because this is always subjective.

PB: But at the same time, we are known for our very low cost missions. For a Falcon 9, they charge about $70 million per launch (ballpark figures) while India did a mission to Mars for roughly the same price. This included the rocket and the satellite, going all the way to Mars. Does that make us feel like we’re very, very competitive in pricing, which is why so many foreign customers are also coming to India?

(ISRO’s Mars Orbiter Mission was a technology demonstrator. The endeavour’s primary mission was to provide a proof of concept of an Indian orbiter at Mars. Second, the satellite’s size and capabilities were both limited by the PSLV’s payload capacity; to wit, MOM’s scientific payload weighed a measly 15 kg whereas the NASA MAVEN, which launched in the same window as MOM, had instruments weighing 65 kg. Third, not many scientific papers have been published on the back of MOM-specific findings. When Bagla says “India did a mission to Mars for roughly the same price” as a single Falcon 9 launch, I also invite him to consider that ISRO has access to cheaper labour than is available in the West and that the MOM launch was noncommercial whereas the Falcon 9 is a rocket developed – and priced – for commerce and profit.)

KS: Foreign customers are coming to India for two reasons. One is, as you said, we’re cost effective – mainly by way of manufacturing and selection of materials. We also make simple rockets. The second reason customers prefer us is the robustness. The reliability of our PSLV is large. When a customer comes to us, they want to make sure there’s a 100% chance their satellite reaches its orbital slot.

PB: So are we cheaper than SpaceX or not?

🤦🏾

KS: Again, I don’t want to compare because it is not correct to compare. If the two rockets were made in the same timeframe, in the same place with equivalent amounts of effort, we can compare. But the rockets have been made in different parts of the world, according to different needs. What I can say is that we have a low-cost vehicle.

Almost exactly a year ago, I’d argued the same thing for The Wire, in an article that didn’t go down well with most readers (across the political spectrum). The thrust of it was that the PSLV had been designed from 1977 onwards to launch Indian remote-sensing satellites and that ISRO receives all its funding from the Department of Space. OTOH, SpaceX designed the Falcon 9 to fit prevailing market needs and, though the company receives a lot of money through NASA contracts, its raison d’être as a private entity is to make money by commercialising launch services. Excerpt:

Casting the GSLV, presumably the Mk-III, as a super-soldier in the space-war arena could be misguided. Unlike SpaceX or Arianespace, but much like Roscosmos, ISRO is a state-backed space agency. It has a mandate from the Department of Space to be India’s primary launch-services provider and fulfil the needs of both private entities as well as the government, but government first, at least since that is how policies are currently oriented. This means the GSLV Mk-III has been developed keeping in mind the satellites India currently needs, or at least needs to launch without ISRO having to depend on foreign rockets. …

On the other hand, Arianespace and SpaceX are both almost exclusively market-driven, SpaceX less so because it was set up with the ostensible goal of colonising Mars. Nonetheless, en route to building the Falcon Heavy, the company has built a workhorse of its own in the Falcon 9. And either way, together with Arianespace, it has carved out a sizeable chunk of the satellite-launching market. …

Thus, though Antrix is tasked with maximising profits, ISRO shouldn’t bank on the commercial satellites market because its mix of priorities is more diverse than those of SpaceX or Arianespace. In other words, the point isn’t to belittle ISRO’s launchers but to state that such comparisons might just be pointless because it is a case of apples and oranges.

Sadly for Bagla – and many others like him looking the fools for pushing such a silly idea – our own space programme assumes value only when compared to someone else’s agenda, irrespective of whether the comparison even makes sense. I also wonder if Sivan thinks such are the questions the consumers of NDTV’s journalism want answered – an idea not so farfetched if you consider that not many journalists get access to ISRO’s top brass in the first place – as well as what fraction of the Indian citizenry consumes the success of the Indian space programme simply relative to the successes of others and not as an enterprise established to serve India’s needs first.

We don’t have a problem with the West, we’re just obsessed with it

When you don’t write about scientific and technological research for its inherent wonderfulness but for its para-scientific value, you get stories born out of jingoism masquerading as a ‘science’ piece. Take this example from today’s The Hindu (originally reported by PTI):

A new thermal spray coating technology used for gas turbine engine in spacecraft developed by a Rajasthan-based researcher has caught the attention of a NASA scientist, an official said.

Expressing his interest in the research, James L. Smialek, a scientist from NASA wrote to Dr. Satish Tailor after it was published in the journal Ceramics International and Thermal Spray Bulletin, said S.C. Modi, the chairman of a Jodhpur-based Metallizing Equipment Company.

This story is in the news not because a scientist in Rajasthan (Tailor) developed a new and better spray-coating technique. It’s in the news because a white man* (Smialek) wrote to its inventor expressing his interest. If Smialek hadn’t contacted Tailor, would it have been reported?

The article’s headline is also a bit off: ‘NASA keen on India-made technology for spacecraft’ – but does Smialek speak for NASA the organisation? He seems to be a senior research scientist there, not a spokesperson or a senior-level decision-maker. Additionally, “India-made”? I don’t think so. “India-made” would imply that a cohesion of Indian institutions and laboratories are working to make and utilise this technology – whereas while we’re fawning over NASA’s presumed interest, the story makes no mention of ISRO. It does say CSIR and DRDO scientists are “equally” interested but to me “India-made” would also then beggar the question: “Why cut funding for CSIR?”

Next, what’s a little funny is that while the Indian government is busy deriding Western ‘cultural imports’ ruining our ‘pristine’ homegrown values, while Indian ministers are constantly given to doubting the West’s scientific methods, some journalists are using the West’s acknowledgment to recognise Indian success stories. Which makes me think if what we’re really doing is being obsessed with the West instead of working towards patching the West’s mistakes, insofar as they are mistakes, with our corrections (very broadly speaking).

The second funny thing about this story is that, AFAIK, scientists writing in one part of the world to those in other is fairly regular. That’s one of the reasons people publish in a journal – especially in one as specific as Ceramics International: so people who are interested in research on the same topic can know what their peers are up to. But by reporting on such incidents on a one-off basis, journalists run the risk of making cross-country communication look rare, even esoteric. And by imbibing the story with the quality of rareness, they can give the impression that Smialek writing to Tailor is something to be proud of.

It’s not something to be proud of for this reason simply because it’s an artificial reason. It’s a reason that doesn’t objectively exist.

Nonetheless, I will say that I’m glad PTI picked up on Tailor’s research at least because of this; akin to how embargoes are beacons pointing journalists towards legitimate science stories (although not all the time), validation can also come from an independent researcher expressing his interest in a bit of research. However, it’s not something to be okay with in the long-term – if only because… doesn’t it make you wonder how much we might not know about what researchers are doing in our country simply because Western scientists haven’t written to some of them?

*No offence to you, James. Many Indians do take take some things more seriously because white people are taking it seriously.

Featured image credit: skeeze/pixabay.

Awk CZTI result from Crab pulsar

An instrument onboard the ISRO Astrosat space-telescope has studied how X-rays being emitted by the Crab pulsar are being polarised, and how such polarisation varies from one pulse to the next. This is very important information for understanding how pulsars create and emit high-energy radiation – information that we haven’t been able to obtain from any other pulsars in the known universe. The underpinning study was published in Nature Astronomy on November 6, 2017.

Quick recap: CZTI stands for the Cadmium Zinc Telluride Imager, a 16-MP X-ray camera and, as The Wire has discussed before, one of the best in its class – in the league of the NASA Fermi and Swift detectors and even better in the 80-250 keV range. Pulsars are rotating neutron stars that emit focused beams of high-energy radiation from two polar locations on their surface. (As it rotates, the beams sweep past Earth like a lighthouse sweeping past ships, giving the impression that it’s blinking, or pulsating). We study them because they’re extreme environments that can help validate theories by pushing them to their limits.

There are two things notable about the current study: how CZTI studied the pulsar and what it found as a result.

1. How – The Crab pulsar, the remnant of a star that went supernova in 1,058 AD, is located 6,500 lightyears away in the direction of the Taurus constellation. Second, pulsars – despite their remarkable radiation output – emit few X-ray photons that can be studied from near Earth. Third, the Crab pulsar has a rotation period of 33 ms (i.e. very fast). For these reasons, CZTI couldn’t just study the pulsar directly and hope to find what it eventually did. Whatever X-ray was collected would’ve had to be precisely calibrated in time. So the CZTI team* partnered up with the Giant Metrewave Radio Telescope in Pune and the Ooty Radio Telescope in Muthorai (Tamil Nadu) for the ephemeris data. In all, there were 21 observations made over (CZTI’s first) 18 months.

2. What – Like a Ferrero Rocher from hell, a pulsar is a rotating neutron star on the inside, wrapped in a very strong magnetic field. Astronomers think charged particles are accelerated by this field and the energy they emit is shot into space, as X-rays + other frequencies of radiation. So studying how these X-rays are polarised could provide more info on how a pulsar produces its famous sweeping pulses. The CZTI data had a surprise: hard X-rays are being emitted by the Crab pulsar in the off-pulse – or the-beam-is-not-pointing-at-us – phase. In other words, the magnetic field isn’t involved in producing these X-rays; the neutron star itself is. Dun dun duuuuuuun!

It’s always nice to get science results that send researchers back to the proverbial drawing board, like the CZTI result has. It’s sweeter still when local researchers are involved – and even sweeter to be reminded that we haven’t been entirely left behind in non-theoretical particle physics research. There’s even more X-ray astronomy in India’s future. After Astrosat, launched in September 2015, ISRO has okayed a proposal from the Raman Research Institute (RRI), Bengaluru, to build an X-ray polarimeter instrument that the org will launch in the future (date not known). Called Polix, it is similar to the NASA GEMS probe that stalled in 2012.

*The CZTI team had scientists from Physical Research Laboratory, Ahmedabad; Tata Institute of Fundamental Research, Mumbai; Inter-University Centre for Astronomy and Astrophysics, Pune; IIT Powai; National Centre for Radio Astronomy, Pune; Vikram Sarabhai Space Centre, Thiruvananthapuram; ISRO, Bengaluru; and RRI.

Featured image: A composite image of the Crab Nebula showing the X-ray (blue), and optical (red) images superimposed. The size of the X-ray image is smaller because the higher energy X-ray emitting electrons radiate away their energy more quickly than the lower energy optically emitting electrons as they move. Caption and credit: NASA/ESA.

The Wire
November 7, 2017

Do your bit, broaden your science menu

If you think a story was not covered by the media, it’s quite likely that that story didn’t feature in your limited news menu, and that it was actually covered by an outlet you haven’t discovered yet. In the same vein, saying the entirety of India’s science media is crap is in itself crap. I’ve heard this say from two people today (and some others on Twitter). I’ll concede that the bulk of it is useless but there are still quite a few good players. And not reading what they are writing is a travesty on your part if you consider yourself interested in science news. Why I think so is a long story; to cut it short: given what the prevailing distribution mechanisms as well as business models are, newsrooms can only do so much to ensure they’re visible to the right people. You’ve got to do your bit as well. So if you haven’t found the better players, shame on you. You don’t get to judge the best of us after having read only the worst of us.

And I like to think The Wire is among the best of us (but I can’t be the final judge). Here are some of the others:

  1. The Telegraph – Among the best in the country. They seldom undertake longer pieces but what they publish is crisp and authoritative. Watch out for G.S. Mudur.
  2. Scroll – Doesn’t cover a lot of sciencey science but what they do cover, they tend to get right.
  3. The Hindu – The Big Daddy. Has been covering science for a long time. My only issue with it is that many of its pieces, in an effort to come across as being unafraid of the technicalities, are flush with jargon.
  4. Fountain Ink – Only long-form and does a fab job of the science + society stories.
  5. Reuters India – Plain Jane non-partisan reportage all round.

I’m sure there are other publishers of good science journalism in India. The five I’ve listed here are the ones that came quickest to mind and I just wanted illustrate my point and quickly get this post out.

Note: This is the article the reactions to which prompted this post.

Featured image credit: Hans/pixabay.

Auditing science stories: Two examples from the bottom rungs

There are different kinds of science stories. I don’t just mean the usual long-form, short-form stuff. I mean there are qualitatively different kinds of stories. They inhabit a hierarchy, and right at the bottom is getting something wrong.

Like the way Livemint did on April 20, 2017, reporting that ISRO had plans to mine resources from the Moon to help manage India’s energy needs. ISRO has no such plans. The report’s author, Utpal Bhaskar, is likely referring to comments made by the noted space scientist Sivathanu Pillai at the Observer Research Foundation’s Kalpana Chawla Space Policy Dialogue 2017, held in March. Pillai had said mining helium-3 from the Moon was possible – but he didn’t say anything about ISRO planning such a thing. India TV then quoted Livemint and published a report of their own, not a detail changed.

Right on top of getting something wrong on the quality hierarchy is the act of reporting something that doesn’t deserve to be – the way The Guardian did, also on April 20. Ian Sample, the newspaper’s science editor, published a piece titled ‘No encounters: most ambitious alien search to date draws a blank’. What he seems to make no big deal of is mentioned – to be fair – in the first paragraph, but without playing up its significance in this context: Breakthrough Listen, the search mission, has been online for only a year.

And in this time, nobody expected its odds of finding anything would be noticeable. I’d say the deeper flaw in the story is to pay heed to the fact that this is humans’ most ambitious project of this kind yet. Well, so what if it is? It’s still not big enough to have better odds of finding anything in its first year of ops (the story itself says how they used one telescope last year and that it scanned 629 stars – both puny numbers). In other words, this is a null result and no one expected anything better. At best, it should’ve been a tweet, a status update for the records – not a news report suggesting disappointment. So in a way Sample’s effort can be construed as a null result reported wrong.

Finally, I will not speculate if Sample, who’s probably attending the Breakthrough Discuss conference (also being live-cast through Breakthrough’s Facebook page) on April 20-21, has been obligated by the organisers to publish a report on the subject – but I will say I’m tempted to. 😉 And I recommend just following Paul Gilster’s blog if you’re interested in updates on the Breakthrough Initiatives.

Featured image: The Green Bank radio telescope, West Virginia. Credit: NRAO/AUI, CC BY 3.0.

Is it so blasphemous to think ISRO ought not to be compared to other space agencies?

ISRO is one of those few public sector organisations in India that actually do well and are (relatively) free of bureaucratic interference. Perhaps it was only a matter of time before we latched on to its success and even started projecting our yearning to be the “world’s best” upon it – whether or not it chose to be in a particular enterprise. I’m not sure if asserting the latter or not affects ISRO (of course not, who am I kidding) but its exposition is a way to understand what ISRO might be thinking, and what might be the best way to interpret and judge its efforts.

So last evening, I wrote and published an article on The Wire titled ‘Apples and Oranges: Why ISRO Rockets Aren’t Comparable to Falcons or Arianes‘. Gist: PSLV/GSLV can’t be compared to the rockets they’re usually compared to (Proton, Falcon 9, Ariane 5) because:

  1. PSLV is low-lift, the three foreign rockets are medium- to -heavy-lift; in fact, each of them can lift at least 1,000 kg more to the GTO than the GSLV Mk-III will be able to
  2. PSLV is cheaper to launch (and probably the Mk-III too) but this is only in terms of the rocket’s cost. The price of launching a kilogram on the rocket is thought to be higher
  3. PSLV and GSLV were both conceived in the 1970s and 1980s to meet India’s demands; they were never built to compete internationally like the Falcon 9 or the Ariane 5
  4. ISRO’s biggest source of income is the Indian government; Arianespace and SpaceX depend on the market and launch contracts from the EU and the US

While spelling out any of these points, never was I thinking that ISRO was inferior to the rest. My goal was to describe a different kind of pride, one that didn’t rest on comparisons but drew its significance from the idea that it was self-fulfilling. This is something I’ve tried to do before as well, for example with one of the ASTROSAT instruments as well as with ASTROSAT itself.

In fact, when discussing #3, it became quite apparent to me (thanks to the books I was quoting from) that comparing PSLV/GSLV with foreign rockets was almost fallacious. The PSLV was born out of a proposal Vikram Sarabhai drew up, before he died in 1970, to launch satellites into polar Sun-synchronous orbits – a need that became acute when ISRO began to develop its first remote-sensing satellites. The GSLV was born when ISRO realised the importance of its multipurpose INSAT satellites and the need to have a homegrown launcher for them.

Twitter, however, disagreed – often vehemently. While there’s no point discussing what the trolls had to say, all of the feedback I received there, as well as on comments on The Wire, seemed intent ISRO would have to be competing with foreign players and that simply was the best. (We moderate comments on The Wire, but in this case, I’m inclined to disapprove even the politely phrased ones because they’re just missing the point.) And this is exactly what I was trying to dispel through my article, so either I haven’t done my job well or there’s no swaying some people as to what ISRO ought to be doing.

screen-shot-2017-02-19-at-6-57-38-am

We’re not the BPO of the space industry nor is there a higher or lower from where we’re standing. And we don’t get the job done at a lower cost than F9 or A5 because, hey, completely different launch scenarios.

screen-shot-2017-02-19-at-7-03-10-am

Again, the same mistake. Don’t compare! At this point, I began to wonder if people were simply taking one look at the headline and going “Yay/Ugh, another comparison”. And I’m also pretty sure that this isn’t a social/political-spectrum thing. Quite a few comments I received were from people I know are liberal, progressive, leftist, etc., and they all said what this person ↑ had to say.

screen-shot-2017-02-19-at-7-07-12-am

Compete? Grab market? What else? Colonise Mars? Send probes to Jupiter? Provide internet to Africa? Save the world?

screen-shot-2017-02-19-at-7-54-05-am

Now you’re comparing the engines of two different kinds of rockets. Dear tweeter: the PSLV uses alternating solid and liquid fuel motors; the Falcon 9 uses a semi-cryogenic engine (like the SCE-200 ISRO is trying to develop). Do you remember how many failures we’ve had of the cryogenic engine? It’s a complex device to build and operate, so you need to make concessions for it in its first few years of use.

screen-shot-2017-02-19-at-7-09-18-am

“If [make comparison] why you want comparison?” After I’ve made point by [said comparison]: “Let ISRO do its thing.” Well done.

screen-shot-2017-02-19-at-7-11-55-am

This tweet was from a friend – who I knew for a fact was also trying to establish that Indian and foreign launchers are incomparable in that they are not meant to be compared. But I think it’s also an example of how the narrative has become skewed, often expressed only in terms of a hierarchy of engineering capabilities and market share, and not in terms of self-fulfilment. And in many other situations, this might have been a simple fact to state. In the one we’re discussing, however, words have become awfully polarised, twisted. Now, it seems, “different” means “crap”, “good” means nothing and “record” means “good”.

screen-shot-2017-02-19-at-7-18-56-am

Comments like this, representative of a whole bunch of them I received all of last evening, seem tinged with an inferiority complex, that we once launched sounding rockets carried on bicycles and now we’re doing things you – YOU – ought to be jealous of. And if you aren’t, and if you disagree that C37 was a huge deal, off you go with the rocket the next time!

3d91753a-ec8d-4cd6-82f2-76b1560b6108

The Times of India even had a cartoon to celebrate the C37 launch: it mocked the New York Times‘s attempt to mock ISRO when the Mars Orbiter Mission injected itself into an orbit around the red planet on September 27, 2014. The NYT cartoon had, in the first place, been a cheap shot; now, TOI is just saying cheap shots are a legitimate way of expressing something. It never was. Moreover, the cartoons also made a mess of what it means to be elite – and disrupted conversations about whether there ought to be such a designation at all.

As for comments on The Wire:

screen-shot-2017-02-19-at-8-39-13-am

Obviously this is going to get the cut.

screen-shot-2017-02-19-at-8-38-31-am

As it happens, this one is going to get the cut, too.

I do think the media shares a large chunk of the blame when it comes to how ISRO is perceived. News portals, newspapers, TV channels, etc., have all fed the ISRO hype over the years: here, after all, was a PSU that was performing well, so let’s give it a leg up. In the process, the room for criticising ISRO shrank and has almost completely disappeared today. The organisation has morphed into a beacon of excellence that can do no wrong, attracting jingo-moths to fawn upon its light.

We spared it the criticisms (offered with civility, that is) that would have shaped the people’s perception of the many aspects of a space programme: political, social, cultural, etc. At the same time, it is also an organisation that hasn’t bothered with public outreach much and this works backwards. Media commentaries seem to bounce off its stony edifice with no effect. In all, it’s an interesting space in which to be engaged, as a researcher or even as an enthusiast, but I will say I did like it better when the trolls were not interested in what ISRO was up to.

Featured image credit: dlr_de/Flickr, CC BY 2.0.

TIFR's superconductor discovery: Where are the reports?

Featured image: The Meissner effect: a magnet levitating above a superconductor. Credit: Mai-Linh Doan/Wikimedia Commons, CC BY-SA 3.0.

On December 2, physicists from the Tata Institute of Fundamental Research (TIFR) announced an exciting discovery: that the metal bismuth becomes a superconductor at a higher temperature than predicted by a popular theory. Granted the theory has had its fair share of exceptions, the research community is excited about this finding because of the unique opportunities it presents in terms of learning more, doing more. But yeah, even without the nuance, the following is true: that TIFR physicists have discovered a new form of superconductivity, in the metal bismuth. I say this as such because not one news outlet in India, apart from The Wire, reported the discovery, and it’s difficult to say it’s because the topic was too hard to understand.

This was, and is, just odd. The mainstream as well as non-mainstream media in the country are usually quick to pick up on the slightest shred of legitimate scientific work and report it widely. Heck, many news organisations are also eager to report on illegitimate research – such as those on finding gold in cow urine. After the embargo on the journal paper lifted at 0030 hrs, I (the author of the article on The Wire) remained awake to check if the story had turned out okay – specifically, to check if anyone had any immediate complaints about its contents (there were two tweets about the headline and they were quickly dealt with). But then I ended up staying awake until 4 am because, as much as I looked on Google News and on other news websites, I couldn’t find anyone else who had written about it.

Journal embargoes aren’t new, nor is it the case that journalists in India haven’t signed up to receive embargoed material. For example, the multiple water-on-Mars announcements and the two monumental gravitational-waves discoveries were all announced via papers in the journal Science, and were covered by The Hindu, The Telegraph, Times of India, Indian Express, etc. And Science also published the TIFR paper. Moreover, the TIFR paper wasn’t suppressed or buried in the embargoed press releases that the press team at Science sends out to journalists a few days before the embargo lifts. Third, the significance of the finding was evident from the start; these were the first two lines of the embargoed press release:

Scientists from India report that pure Bismuth – a semimetal with a very low number of electrons per given volume, or carrier concentration – is superconducting at ultralow temperatures. The observation makes Bismuth one of the two lowest carrier density superconductors to date.

All a journalist had to do was get in touch with Srinivasan Ramakrishnan, the lead author of the paper as well as the corresponding author, to get a better idea of the discovery’s significance. From my article on The Wire:

“People have been searching for superconductivity in bismuth for 50 years,” Srinivasan Ramakrishnan, the leader of the TIFR group, told The Wire. “The last work done in bismuth found that it is not superconducting down to 0.01 kelvin. This was done 20 years ago and people gave up.”

So, I’m very curious to know what happened. And since no outlets apart from The Wire have picked the story up, we circle back to the question of media coverage for science news in India. As my editor pointed out, the major publications are mostly interested in stuff like an ISRO launch, a nuclear reactor going critical or an encephalitis outbreak going berserker when it comes to covering science, and even then the science of the story itself is muted while the overlying policy issues are played up. This is not to say the policies are receiving undeserving coverage – they’re important, too – but only that the underlying science, which informs policy in crucial ways, isn’t coming through.

And over time this disregard blinds us to an entire layer of enterprise that involves hundreds of thousands of our most educated people and close to Rs 2 lakh crore of our national expenditure (total R&D, 2013).