Tag Archives: GM crops

Source: YouTube

Feroze Varun Gandhi’s innovative prescriptions for Indian S&T

Where Feroze Varun Gandhi writes about “forging a culture of innovation” in India:

We need to push beyond metrics, papers and patents to focus on providing solutions to development and economic challenges. A focus on building an innovation culture is necessary, particularly giving the transformative shifts under way in sectors critical to India’s economy — from electric cars in automobiles to insourcing in IT services, the economy is exposed to significant job losses and a fall in exports over the coming decade. Our innovation policy has to shift beyond a focus on increasing R&D spending to inculcating a mindset of “out-of-the-box” thinking in our universities, start-ups and corporates. India’s educational policies need to be redesigned, with a focus on building cognitive abilities, beyond rote learning and focus on quantitative subjects.

Dear minister, did you speak to a scientist before writing this? (Alternatively, did your ghost-writer speak to a scientist before writing this?) K. VijayRaghavan was just appointed PSA; I’m sure he’d have been happy to take your call.

Because I’m getting tired of pieces in this template, where authors drop a bunch of numbers we’re so familiar with that many of us have memorised it, and just keep saying “India needs to do better science and better tech”.

In fact, I doubt Feroze Varun Gandhi even wrote this piece. It’s quite easy to write because it offers no new information, no new perspectives and no new insights. Obviously India needs to be better. We all already know that.

So what is this piece about? It’s FVG putting on display the fact that he too can write about science and tech. It’s FVG putting on display that he can think rationally about science and tech spending, irrespective of his party’s often-stupid claims. It’s essentially FVG saying #notallpoliticians.

But as a Bharatiya Janata Party MP, what’s expected of him if he’s going to write about science is something else. It’s about nitty gritties (tell me something I don’t know!), about what he’s doing to change his party’s mindset about “ancient India”, about his efforts to participate in policymaking in science, translational research, tech and research-funding.

But none of these items feature in his piece. Instead, FVG seems content about drawing comparisons to South Korea and the US, quoting from their budget reports, and drawing B-grade parallels to a country whose uniqueness our leaders often like drawing attention to.

By disregarding this uniqueness – of research culture, traditional knowledge, etc. – when talking about scientific research and technological development, people like FVG betray their failure in understanding that scientists are people, too. By ignoring the cultural and political contexts they negotiate, FVG assumes that Indian scientists are simply not thinking hard enough, out of the box enough, etc.

Most of FVG’s piece focuses on downstream activities; when it does turn upstream, it’s only to talk about R&D spending (itself a nebulaic description) or improving “cognitive abilities”. I predict his next oped is going to be about eradicating tuberculosis by 2025, with the following keywords: MDR TB, XDR TB, masks, vaccines, private healthcare and medical insurance. After that, I suspect it’s going to be nuclear fusion.

There’s not a line in FVG’s piece about

  1. Facilitating collaborations
  2. Addressing a monumental language barrier
  3. Women, transgender people and LGBTQIA+ scientists
  4. School students
  5. Reforming grant-disbursal
  6. University autonomy
  7. Preserving safe spaces for intellectual discourse
  8. Research ethics
  9. Setting up schemes on a consultative basis
  10. Making government bodies transparent

Also, science is not divorced from the social sciences. Assuming (wrongly) for a moment that science is neutral and reflexive on short timescales, technology is inherently political. It’s going to create new jobs but get rid of older ones; it’s going to divert resources, redistribute value and require new regulation. A government has to deal with such changes through affirmative action, protecting the livelihoods of the underprivileged and the rights of all its citizens.

If genetically modified crops – a powerful example of the “new technologies” that FVG mentions – haven’t been adopted in India even though scientists are clear that they’re safe, it’s because the government has disenfranchised farmers in the past, slipped up on crop insurance and fixing sale prices, treated public resource management with kid gloves, kept genetic testing data out of the public domain and dealt with agricultural distress according to what will win them a nearby election.

The effects of such botch-ups will be felt upstream, the place that FVG is looking at as if it were an eclipse. Recently, Devang Mehta, a biologist at ETH Zurich, recently wrote a moving piece for Massive about how he was quitting GMO studies because he – like many of his peers – never agreed to put up with the acerbic activism against the technology. IMO, such acerbity is necessary to deal with the Government of India.

Seriously, let’s get over the “numbers are the problem” routine. As a Member of Parliament, FVG doesn’t get to throw his hands up in the air and say, “Here are the numbers, and this is what we need to fix.” There’s a cultural crisis underway in India’s educational and research institutions. Admittedly, it’s a lot of information to process and opine about. If FVG can’t talk about them, he should just not.

It’s perfectly fine. For every moronic utterance that ancient India invented everything, another minister’s silence is worth volumes. It’s a low bar but I’m sure the more cynical among us will take it. It’s obviously important to keep conversations about science and research going in the public domain, but an overwhelming number of those in power appear to be stuck at simply acknowledging a bird’s eye view of our research and development woes, and never really getting into the thick of it.

What’s worse is opeds like FVG’s are taken to be some kind of expression of commitment when they’re not. “Fixing” science is an arguably riskier, stinkier task than “fixing” most other sectors because of the ubiquitous, but eminently fixable, cluelessness. Every new oped that advertises such cluelessness by sticking to the data that FVG has is a proclamation that the author doesn’t give a damn. If the author had, this wouldn’t be the piece they’d be writing.

If this piece had been pitched to me, I’d have rejected it for the reasons above and because publishing it would’ve given the impression that politicians care. They don’t care – not if this oped is anything to go by. It’s a puff piece. My suggestion is to drop the incessant oped-writing and pay attention to the ‘March for Science’ on April 14.

Featured image: Varun Gandhi. Source: YouTube.

GM: confronting contradictions

There was a rash of articles published online recently – such as this one – about how the adult human mind, when confronted with information that contradicts its existing beliefs, does not reorganise what it knows but rejects the information’s truthfulness itself. During political conversations, this aspect of how we think and learn is bound to influence both the way opposing parties argue and the effects of propaganda on people. However, this notion’s impact seems to me to be more dire w.r.t. the issue of genetically modified (GM) crops.

Even when confronted with evidence in support of GM crops from the scientific literature, anti-GM activists reflexively take recourse in the deficiencies inherent in the scientific method, even if the deficiencies themselves are well-known.

In the specific example of GM mustard, there is no clear answer: the variant developed by Deepak Pental & co. has lower yield than some non-GM varieties but higher pest-resistance and is easier to breed. As a result, any single discussion of GM mustard’s eligibility to be a food crop (it hasn’t been released into the market yet) should address its pros and cons together instead of singling out its cons.

It would seem anti-GM activists are aware of this pressure because whenever scientists raise the pros of GM mustard, the activists’ first, and often last, line of reasoning is to quote even other studies. They are in turn rebutted by more studies, and the backs and forths go on until the entire debate becomes hinged on disagreements over minutiae. Granted, allowing bad GM crops to be commercialised can have deadly consequences. But this is also true of a score other enterprises in which we are happy to go along with approximations. Why the selective outrage?

It can’t be that farmer suicides touch a nerve because they are driven not just by crop failure but also by crop insurance, grain storage/distribution and pricing indices (such as the differences between rural CPI and MSP). Estimating these three factors is a task ridden with inaccuracies, many ill-supported assumptions and, frequently, corruption. However, we don’t seem to have raged against them with as much intensity as we have against GM mustard. We should have because of what Harish Damodaran eloquently expressed in The Indian Express on June 1:

Why is there so much opposition to a technology developed, after all, by Indian scientists in the public sector? Yes, the original patent for the [Barnase-Barstar-Bar hybridisation] system was filed by Plant Genetics Systems (now part of Bayer CropScience), but the CGMCP scientists improved upon it, for which they obtained patents (three US, two Canadian, one European Union and Australian each). Yet, we see no value in their work. The opponents — from the so-called Left or the Right — haven’t even bothered to visit the CGMCP, most accessibly located in Delhi University’s South Campus, while taking time out for anti-GMO jamborees in Brussels and The Hague. All this opposition is reflective of a unique Us and Them syndrome. For “us”, nothing but the latest would do. But farmers will have no right to grow GM mustard and assess its performance on the field.

The persuasion to constantly reject one study for another and our hypocritical stand on the ownership of GM crops together suggest that the pro/anti-GM debate is going to be settled by neither of these tactics. They are both the effects of a common flaw: ideological stubbornness. Even I – being pro-GM – am inclined to consign some farmers’ opposition to GM mustard to fear-mongering by activists. Sometimes I can find something easily refuted but at others, I struggle to change my mind even if the facts are evident. Anyway, while I can’t think of what it is that we can do to make ourselves less stubborn (each to her own, perhaps?), I do think it’s important we stay aware of our biases’ impact on our public conversations.

PS: If my post seems one-sided, addressing the behaviour of only anti-GM groups, one reason is that anti-GM expression in the mainstream as well as social media overshadows pro-GM expression. I’m also biased, of course.

Featured image credit: WikimediaImages/pixabay.

Roundup of missed stories – February 14, 2016

Previous editions here.

1. Zika virus and the 2016 Olympics, Umrah and Hajj – “These mass gatherings provide an additional opportunity to undertake research on the transmission and prevention of Zika virus. Preparedness has been the key to success of recent Hajj mass gatherings held amid known risks, such as pandemic influenza A H1N1, MERS, and Ebola outbreaks. Lessons from Saudi Arabia’s success with hosting Hajj during declared pandemics can be helpful to Brazil and the Olympics organisers. The next 4 months will be a crucial period for both Brazilian and Saudi authorities to review emerging research findings on the natural history of Zika virus through expert consultations. International stakeholders can facilitate the needed advocacy and support.”

2. The incredible story of LIGO – “Dicke, a master at cutting through thorny mechanical dilemmas, also instilled in Weiss the value of solid experimental design. Returning to MIT as a professor, Weiss embraced the teachings of his mentors and became one of the world’s leading experts in high-precision measurements of gravity. The capstone of Weiss’s career is LIGO. Weiss developed the notion of using a special technique called laser interferometry to track minute movements of matter due to gravitational waves. Interferometry involves focused beams of light with well-defined frequencies (i.e., laser beams), traveling along separate paths, then coming together again. The pattern created when the beams reunite provides precise information about the difference in path length.”

3. LIGO’s detection of gravitational waves was predicated on already knowing what to look for – even though we’re finding it for the first time

3a. Cornell theorists affirm gravitational wave detection – ““You need big computers because the equations are so complicated,” explained Larry Kidder, senior research associate and a co-leader of the SXS collaboration. One calculation – with varying masses and spin rates – takes a supercomputer a full week to solve, running 24 hours a day. With different parameters, some calculations take months. SXS created a theoretical catalog of what the different possible gravitational waves would look like. Teukolsky said that the new LIGO paper shows the measured waves with an SXS wave superposed on top and in excellent agreement with the measurements. “That’s a very strong confirmation that these are gravitational waves that come from black holes – and that Einstein’s general theory of relativity is correct,” he said.”

3b. Gravitational waves found, black-hole models led the way – “”Even though the modeling and observations of these gravitational wave sources is difficult, requiring detailed, multi-physics models, the potential to study new realms of physics and understand new astrophysical transients is tremendous. Los Alamos is well-poised to solve these problems,” Fryer said. “Our program studying merger progenitors argued that the most-likely system would be a binary black hole system,” stated Fryer, “and it is gratifying to see that this first detection is exactly such a system. As aLIGO detects more of these mergers we will be able to probe aspects of stellar evolution.””

3c. The scale of the universe is amazing – but more astonishing still is the science that lets us understand it – “That men and women can, in a few short years, take tiny smidges of data from often ill-behaved instruments around the world and judiciously combine them with a wide range of physical theory – including the demanding mathematical subtleties of general relativity – to form an account of something not only unimagined but unimaginable to anyone without the new mental equipment this joint endeavour provided: that seems to me a source of wonder greater than the vastest of astronomical numbers.”

4. ICCR conference to explore ‘Indian origins’ of Romany people such as Elvis Presley, Pablo Picasso – “”These names such as Charlie Chaplin or Elvis Presley are not being arbitrarily thrown up but have come to be associated here with a lot of research. Prima facie, these artists are from the Roma community which have traces in India,” he said. “They migrated from here to Europe 2,500 years ago but till today they have preserved many of social and cultural traditions. We are attempting to bring out that commonality, and express our affinity towards the community.”

5. The case of the sinister buttocks – “One more observation, about definition: This case teaches us that defining plagiarism in terms of lifting someone else’s sequence of words is far too restrictive. If you will forgive me some technical notation, a sentence with words w1 … wk may also be reasonably suspected of being plagiarized if there is an unacknowledged source sentence x1 … xk such that, for most i between 1 and k, either (a) wi = xi or (b) wi is in the set of words presented in some thesaurus or synonym-dictionary as alternatives for xi or (c) wi and xi are both in the set of words presented in the entry for some third word (recall service and liturgy).”

6. High stakes as Japanese space observatory launches – “The major existing X-ray satellites are NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton, which both launched in 1999. These can analyse the constituent wavelengths of X-rays — the spectra — emitted by point-like objects such as stars. But ASTRO-H will be the first to provide high-resolution spectra for much more spread-out X-ray sources such as galaxy clusters, says Norbert Schartel, project scientist for XMM-Newton at ESA’s European Space Astronomy Centre outside Madrid, who is also a member of ASTRO-H’s ESA team.”

7. Hail, Clooney! – “… everyone was resigned to the fact that this was more or less a Clooney show. The actor was asked if he’d make a sequel to Syriana, the Oscar-winning film on petroleum politics that he produced. He said, “There is a lot wrong with the world, as we all know. But we are in a political period in our country today, and we’re not talking enough about the world. As filmmakers, we react to events. We don’t lead the way. The film happens years after the news story breaks. And you need a good story, good characters.” He spoke of his humanitarian work in Darfur (“it’s very close to me”) and how he’d like to make a film around the conflict. “But we haven’t found the proper script yet.” He said he was meeting Angela Merkel the next day.”

8. Measurements of the gravitational constant continue to fail to converge – “Who needs a more accurate numerical value of G (the current recommended value6 is 6.67408 ± 0.00031 × 10−11 kg−1 m3 s−2)? The short answer is, nobody, for the moment, but being apparently unable to converge on a value for G undermines our confidence in the metrology of small forces. Although it is true that the orbits of the planets depend on the product of G and the mass of the Sun — the structures of all astrophysical objects are determined by the balance of gravity and other forces produced by, for example, gas, photon or degeneracy pressure — ab initio models of the Sun are still an order of magnitude away from predicting a value of G at a level comparable with laboratory determinations. We do not need a value of G to test for departures from the inverse square law or the equivalence principle. There is as yet no prospect of a theory of quantum gravity that would predict a value for G that could be tested by experiment. Could these unresolved discrepancies in G hide some new physics?”

9. Retraction Watch interviews Jeffrey Drazen, coauthor of controversial NEJM editorial – “We knew this is a sensitive area, and the editorial brought into the open what had been simmering under the surface. What we now have is an opportunity to have an open and frank discussion about data sharing. This is all about the patients. This is all about disease. We can’t let it be about anything else.”

10. Extending an alternative to Feynman diagrams – “The problem with effective field theories that the authors address is that higher-dimension terms give rise to contributions that cannot be determined by factorization. In some effective field theories, however, these higher-dimension terms are connected to lower-dimension ones by symmetries. This is the case, for example, for nonlinear sigma models, which describe pion interactions at low energies. In this case, and in others, the symmetries are reflected in the behavior of the scattering amplitudes: they approach zero more rapidly as we take some of the external momenta to zero. Cheung et al. take advantage of this behavior to extend the applicability of Cauchy’s theorem to cases where the infinite-momentum condition fails to hold. Their work allows us to extend the idea of defining quantum field theories via physical principles, instead of via a Lagrangian, to an important class of effective field theories.”

11. Cosmologist Janna Levin on the vitalising power of obsessiveness, from Newton to Einstein – “The history of innovation offers plenty of testaments — most of the people we celebrate as geniuses, whose breakthroughs forever changed our understanding of the world and our experience of life, labored under David Foster Wallace’s definition of true heroism — “minutes, hours, weeks, year upon year of the quiet, precise, judicious exercise of probity and care — with no one there to see or cheer.” Marie Curie toiled in her lab until excessive exposure to radiation begot the finitude of her flesh, wholly unprotected by her two Nobel Prizes. Trailblazing astronomer Maria Mitchell made herself “ill with fatigue” as she peered into the cosmos with her two-inch telescope well into the night, night after night. Thomas Edison tried material after material while looking for a stable filament for the first incandescent bulb, proclaiming: “I have not failed. I’ve just found ten thousand ways that won’t work.” And then there was light.”

12. Stephen Hawking v. Paul Rudd for the fate of humanity

13. India needs home-grown GM food to stop starvation – “India should stop trying to build the Taj Mahal with borrowed bricks. We need a concerted effort at home to discover and manipulate relevant genes in indigenous organisms and crops (such as chickpea and rice). Indian microbial institutes should take up projects in this direction, because most of the currently used genes for transgenic generation are of microbial origin. That requires a change in direction from an Indian GM-food strategy that has traditionally aimed at quick product development instead of careful assessment of the underlying science. Such home-grown GM crops would also reduce reliance on transgenic technology produced by multinational companies, which is expensive and rarely optimized for the conditions of specific regions. Some GM crops designed abroad need more water than is usually available in some parts of India, for example, putting great stress on farmers. Indian scientists need better training in IP issues, especially when our researchers join foreign collaborations to examine and exploit the molecular biology of our natural resources. Otherwise, Indian researchers may get the scientific credit for discoveries but fail to claim the right to commercialize the products developed.”

14. Watch the destruction of Pompeii by Mt. Vesuvius, recreated with computer animation – “The ash-preserved ruins of Pompeii, more than any other source, have provided historians with a window into just what life in that time and place was like. A Day in Pompeii, an exhibition held at the Melbourne Museum in 2009, gave its more than 330,000 visitors a chance to experience Pompeii’s life even more vividly. The exhibition included a 3D theater installation that featured the animation above. Watch it, and you can see Pompeii brought back to life with computer-generated imagery — and then, in snapshots over the course of 48 hours, entombed by Vesuvius again.”

15. ‘I’ll take the radiant, radioactive half-life of love over half-love’ – “The span of a woman’s twenties—not just in urban India, but elsewhere too—is a period in which she can go from being an ingénue playing at power with older men to becoming, herself, a station of strength. “It is astonishing how strong you become, when you’ve spent a lot of time being other people’s weaknesses,” I write in one story, ‘Corvus’. A weakness—a flaw, a temptation, a mistake. Strength takes shape, invariably, through failure, including the failures of others. It happens, ultimately, through unrequited love, love at the wrong time, love afraid of the sound of its own name. And so, left to yourself in the absence of other scaffolding, you teach yourself how to build an Ark that you fill one by one by one by one with memory that petrifies into treasure, risk that alchemises into beauty, rupture that raptures into meaning. And then, by yourself, you pull its door closed.”

16. A gradual decline of nuclear power is in the offing – “… energy demand is growing rapidly, leading to construction of just about every form of electricity generation known. The two most populous of these economies — China and India — have great ambitions for nuclear power, and everything else. During 2014, China brought online 5.3 GW of nuclear power, 20.3 GW of wind turbine power, 21.8 GW of hydropower and 53.3 GW of power from thermal plants (mostly coal). Between September 2014 and September 2015, India commissioned a 1 GW nuclear reactor, coal plants generating 16 GW and wind and solar plants generating nearly 5 GW. In recent years, these two, and several other countries, have generated more energy from non-hydro renewables than nuclear energy25. In short, China, India and other developing countries are following an all-of-the-above strategy. As a result, although the overall capacity of nuclear energy might grow, globally the share of nuclear power in electricity generation will continue to drop (Fig. 4). Although costs may currently take a back seat to meeting demand, in the long run the same economic forces shaping the nuclear future in the developed world will limit nuclear growth in the developing world too.”

'Poverty first, Mars next' is a non-idea

The Copernican
April 4, 2014

I am on nobody’s side because nobody is on my side.” – Treebeard, Lord of the Rings

Thanks to two wonderful pieces in the April 3 edition of The Hindu (by D. Balasubramanian andR. Prasad) talking about how scientific enterprise in India has been constantly undermined, it’s pretty clear that there is a perception schism between the fantasies of and the reality of publicly funded scientific development in the country. The underminers in question have been bureaucracy and, periodically, ignorance by the Indian polity – of late, in the form of political manifestos choosing to leave out scientific agendas in favour of more populist schemes.

But with bureaucracy, that is only to be expected. What is not is that, beyond a circle of scientists and science communicators, people seem to be okay with it, too. And this exclusion from the scheme of things has become two-pronged. Among the people, science has been malleated into the form of an unpredictable tool to further our developmental goals. Among the politicians, science has become a thing whose fundamentals can be called into question to pander to political expediency.

Sadly, scientific research and development has been instrumental to India’s progress since even the British Raj, when the construction of factories, transportation routes and communication lines (including what is still one of the world’s largest railway networks) helped dismantle feudalism. After Independence, however, a series of unfortunate mistakes have come together to knock the scientific temperament out of its rightful place in governance.

As Dr. Mathai Joseph told The Hindu, “The fact that scientific departments are modelled on the rest of the bureaucracy has turned out to be a big mistake. That’s because bureaucracy is not designed to encourage innovation.”

Who runs the science?

In August 2012, Colin Macilwain had touched on a similar topic with a piece in Nature titled ‘What matters for science is who runs the country‘. Working on the reasonable assumptions that a) researchers would want someone in the government to further their interests, and b) a government would want a scientist on its side to hone policies, Macilwain suggested that the role of a Scientific Adviser was to bridge the political and scientific classes.

Over the years, however, the Indian chief SA’s role, though continuing to attempt to bridge this divide, has become steadily less effectual. At least as far as C.N.R. Rao is concerned: he set up the IISERs and the Science and Engineering Research Board (SERB), which serve important goals in their own right but also fall prey to the effects of a bureaucratic administration. Moreover, though there has been a growing demand from the scientific community to get the Indian government to spend more than 1% of its GDP on R&D, there is no concerted call from either side to establish a mechanism to ensure that grants are allocated purely on merit, and thereafter to ensure accountability in spending.

In the Vote of Accounts presented by FM P. Chidambaram on February 17, point #74 did proposesomething remedial (albeit as a tax-redemption measure): “I … propose to set up a Research Funding Organisation [RFO] that will fund research projects selected through a competitive process. Contributions to that organisation will be eligible for tax benefits. This will require legislative changes which can be introduced at the time of the regular Budget”

Incidentally, when Rao helped set up the SERB in 2008, its stated aim was to promote research in the basic sciences and provide financial assistance to those who engaged in it. Detrimentally, its Board is chaired by a secretary to the Government of India, and 7 of its 16 other Board members are government agents. As for how likely the next government is to pursue the RFO: I don’t know, but I don’t have my hopes up. For as long as grant-allocation and the government remain strongly coupled, not much is likely to change.

In fact, the government’s involvement is not limited to grants but also extends to issues of autonomy, such as in the appointment of Chancellors or Vice-chancellors, all of which together directly affects the quality and direction of research undertaken. And the situation is only likely to worsen, as D. Balasubramanian mentions in his article, when educational institutions like IITs and IIMs are proposed to be set up to make political amends.

I write all of this, of course, keeping in mind the following lines from the April 3 Speaking of Sciencecolumn in The Hindu: “The central finance ministry, with one stroke of a pen, has cut the operating budget of all science departments by almost 30 per cent of the originally sanctioned amounts. As a result, the science ministries and departments have defaulted in their grant payments and in some instances even salaries. Many young research students are yet to be paid their monthly fellowship money.”

Good idea, bad implementation

Simultaneously, it would seem the government has acquired a bias over the years about the sectors it considers strategic and those it considering available for politically expedient manipulation. The former section accommodates areas like social policies, domestic policies, defence, PDS, employment, etc. The latter accommodates areas like scientific research – but not all of it.

Consider how areas like telecommunication and nuclear physics have received substantial monetary and infrastructural support from the government, while astronomy and materials science lag behind. This divisive addressing of different disciplines has also resulted in a fractious working environment for scientists: collaborations are too few and far between, and interdisciplinary R&D is stifled. If thewords of Luiz Davidovich, a Brazilian researcher speaking at the World Science Forum in Rio de Janeiro, are to be believed, this is a problem plaguing the world’s emerging powers. Perhaps this is one of the most important lessons we should be learning from the USA and the EU.

The government, in its choice of subjects, has also been limited by its own middling knowledge of how likely these enterprises are to elevate sections of the Indian population out of poverty and toward better access to the basic amenities (if not to further vested interests, of course). This is again an instance of expediency and is not sustainable for the scientific community because it implies a support-structure that requires scientists to submit to the government’s agenda. The ideal situation would have the roles well balanced, to see scientific research blossom to improve the quality of all walks of life.

Now, the country’s any meaningful scientific output geared at improving the quality of life in the country is becoming poisoned by government mismanagement. For instance, while many countries have been able to engender a healthy debate on whether a nuclear power plant should be built or if GM crop seeds should be sold, a pall of negativity has descended on these subjects in India because we are unable to separate the DAE from nuclear power generation and the DBT from genetic modification. We must thank a stubborn lack of transparency for this.

Scientific research as an industry

If the fantasy of a fully decoupled government support and government funding were to be realised, and the screen of bureaucracy lifted from our institutions, we would have the chance to be better organised with our research interests. Put practically, we wouldn’t have to fund a fusion project in France because we’d have the temperament to develop a low-cost alternative in India itself (where labour continues to be cheap).

Those in power should know that science, as an organised articulation of human curiosity, is capable of developing products, services and technologies that go beyond alerting farmers of approaching storms or reducing the cost of a smartphone to less than one-plumbed-toilet. Scientific research can also found industries (opening up the thousands of jobs that campaigning politicians promise to the marginalised sections of the electorate), engage graduating scholars (the number of research degrees awarded increased by over 50% between 2008 and 2011, to 16,093, according to a UGC report), elevate the quality of education in the country, promote innovation (by reducing the time taken for a prototype engineered in the lab to a product mass-produced – an important mechanism for labs to prove useful in the eyes of the tax-payer), and cure diseases (did you hear about the Foldscope?).

In fact, those who clamour that India should be alleviating poverty before launching satellites to Mars should shed a sadly prevalent impression of scientific research and technological development that precludes incentives such as job-creation and technology-transfer. Scientific R&D is an industry – rather, can be – like any other. By launching a satellite to Mars (hopefully Mangalyaan will make it), technicians at ISRO now have the capability to coordinate such sophisticated programs. They could also possibly bring in revenue in the future by affording high-load launch-vehicles like the GSLV for developing countries that can’t cough up for the American/European coffers. And in the midst of all this, we must not over-celebrate the frugal budget with which we achieved this feat but use it as an opportunity to ask for incrementally more funding.

In another example, India designed and manufactured some of the superconducting magnets, accelerator heater protection systems and cryogenic facilities used to operate the Large Hadron Collider in Europe. Such components are also commonly used in medical imaging and diagnostics, and India already has a burgeoning medical tourism industry which, according to some estimates, is going to be worth Rs.9,500 crore in 2015. Thus, it seems we also stand to gain if only we could leverage local talent in devising products tailored for the Indian consumer.

As Rahul Sinha, a professor at the Institute of Mathematical Sciences, Chennai, remarked: “Physics is a technology developer.” So this schism between ‘blue sky’ scientific research and India’s developmental hurdles is one that, in an ideal world, doesn’t exist. That it does in our country is thanks only to a government’s mismanagement of its powers.

Let's unMonsanto the debate.

On August 28, I had the opportunity to attend a discussion on the BRAI Bill, currently in Lok Sabha. It was held at The Hindu, and attended by some of my colleagues and some representatives from the Association of Biotechnology Led Enterprises (ABLE). The point of the discussion according to ABLE, which had arranged it, was to create awareness of the bill and dispel some popular misconceptions.

The bill, if passed, will set up a Biotechnology Regulatory Authority of India (BRAI), whose purpose will be to oversee and administer all biotechnology-related activities in India. These powers are wide-ranging, going from fixing prices for genetically engineered seeds to having a hold on export and import of transgenic foodstuff to dictating safety standards for the research, cultivation, production and consumption of genetically modified (GM) crops.

As things stand, the bill is being opposed on many fronts. A Technical Experts Committee constituted by the Supreme Court last year recommended a 10-year moratorium on all field trials of Bt transgenic foodstuff. This was accompanied by the Union Ministry of Environment and Forests suspending all field trials on GM crops, licenses for which were granted by the Genetic Engineering Appraisal Committee (GEAC). Both were centered around India supposedly lacking the infrastructure, skill and manpower to handle transgenic consumables.

Our discussion with ABLE snaked this way and that. It touched upon the GEAC, pesticides use, the possibility of ‘superbugs’, data availability, the Right to Information, and India’s agricultural needs and water-politics. At times, the participants seemed adversarial; at others, convivial. Unfortunately, there was one issue that constantly underpinned the conversation, this one very little to do with what India was or wasn’t capable of: Monsanto, Inc.

Guilt by association

One among the ABLE delegation, Dr. J.S. Rehman, an entemologist and a former member of the Review Committee on Genetic Manipulation (constituted by the Department of Biotechnology), seemed very concerned about this. Monsanto’s unenviable environmental legacy worldwide had riled up activists to protest its coming with such vehemence that, he lamented, Indian biotech. was also being suppressed in the process.

Here are two questions that were addressed to Dr. Rehman during the discussion:

Do you think the entire atmosphere over the biotechnology bill and its understanding or misunderstanding – however you look at it – is largely because of one big MNC called Monsanto?

JSR: “Our using Monsanto as a synonym with GM technology is one of the worst things we’re doing – not only for farmers but also for our people who are trying to develop genes, and who are trying to compete with Monsanto. Every time, everywhere we go, we see people asking very general questions, and we’re wasting out time in educating those people rather than putting our efforts into the development of technology and other things.”

How much have Monsanto’s businesses hijacked the debate over biotech.?

JSR: “We’re in a very bad situation, I think: Monsanto is only the gene developer. It’s not a seed developer. It has the gene which it has given to Mahyco. In Andhra Pradesh, earlier, once Bt cotton was given, for example, and Rs. 1,700 was fixed as cost-per-packet. This was because artificial competition was created in the market by introducing the Bt gene, after which all competitors had to adopt it or face losses. Then, Monsanto demanded a royalty of Rs. 1,200 per packet. So, if I have been selling a packet at Rs. 400, then my new minimum cost is Rs. 1,600. So, the competition was exploited by Monsanto.

These prices are very high for farmers, and allows people to comment that the Bt technology has spiked the cost of packeted seeds. Then, the State intervened, and after a case was filed, Monsanto was forced temporarily to reduce royalty from Rs. 1,200 to Rs. 100. This brought down the price of Bt packets to around Rs. 750-950 per packet. So, both seed companies and the farmers are benefited by the Bt technology. Farmer will also get the benefit of reducing it from Rs. 1,600 to Rs. 750. The only person losing here is Monsanto.

Then, some time after this, the seed-rate was increased. New norms recommended that instead of one packet per acre, farmers use two packets per acre. However, another way to look at this is to see that in a net area, one can go for more productivity.”

So, Indians are succumbing to the fallacy of guilt-by-association – just like with our nuclear program: “Just because the Department of Atomic Energy is doing a bad job of administering India’s nuclear program, the idea of nuclear power is bad.” As Dr. Rehman said, Monsanto may have superior technology. However, it is exploiting the latency of its Indian competitors, and the preferential access it received in the 90s from the Indian government to promote free trade, to come out on top. And when activists assume that all of GM is bad because Monsanto – its leading researcher – is bad, they are suffocating the Indian competition and empowering Monsanto.

Daylight robbery

One other example specific to Monsanto that emerged during the discussion was brought up by Dr. T.M. Manjunath, of ABLE. Dr. Manjunath was a former director at the Monsanto Research Centre, Bangalore.

He felt the need to correct Dr. Rehman on one count: that of the habit of comparing the prices of traditional cotton seeds with Bt cotton seeds. He said, “We shouldn’t compare the two without taking into account the associated benefits from each. For example, if farmers bought traditional seeds at Rs. 400 a packet, then they would also have to spend an additional Rs. 3,000 to Rs. 5,000 to insecticides. So, these [numbers] should be added to that cost. On the other hand, if you buy a packet of Bt cotton seeds at, say, Rs. 1,700, that is all farmers will have to expend there. You wouldn’t have to spray insecticides. Thereby, the farmers are immensely benefited.”

The problem here is that Monsanto is attempting to justify its exorbitant profit margins by citing a higher cost-benefit ratio, forgetting that it does not have a license to rip farmers off. Instead, if the technology has improved enough to keep the cost-benefit ratio high, then the farmer must be the full and final beneficiary. As one of the participants put it: “Monsanto can’t say ‘I’m still giving him a 4,000-rupee window!'”

At the same time, it’d be beneficial for Indian decision-makers to remember that Bt cotton did see some kind of success in India, seeing adoption by over 70 lakh farmers, and lasting well beyond its initially perceived lifetime – 6 to 7 years – before worms developed resistance to it. “One of our recommendations to minimise resistance-development was asking for 20 per cent refugee area. However, we also knew that asking farmers to sacrifice 20 per cent of their land in the name of the yield wasn’t always going to work. But to our surprise, the resistance developed [by pests and worms] has been minimal,” said Dr. Rehman.

There were Bt cotton crop failures, too, but the moral is that Monsanto sucks, yes, but the technology is promising and could be useful for India. For instance, even though Monsanto’s Bt has defied resistance for more than a decade, scientists think the threat is always imminent and that we need to be prepared. If the pall of Monsanto could be cleared (and its monstrous royalties on seeds sales avoided), perhaps an indigenous developer of transgenic seeds (about 20 varieties of which are thought to be in the pipeline) has the answer.

Failure of the stakeholders

The appropriate place from which to address this “hijacking” would be to look at how much of and how well the public sector has been activated – not to compete with Monsanto, which is already spending $1.3 billion a year on GM tech., but to make India become a self-sustaining developer of indigenous biotech. capabilities that can address its immediate needs (such as water sufficiency, which has been worsened by Bt cotton varieties).

In this regard, there has been a failure among stakeholders to explain to the people that it’s not about MNCs v. India, that the BRAI Bill is not only for Monsanto but also for Indian players. The details of how it will take from and give back to them are out of focus.

For example:

  1. Proposed: A single-window clearance system.

    Actually: Seen from the pro-GM (“ergo pro-Monsanto”) side, it could be argued that the government wants to facilitate Indian applications. Seen from the anti-Monsanto (“ergo anti-GM”) side, it looks as if the government wants to fast-track dubious applications. Which one is it?

  2. Proposed: BRAI “will not disclose confidential information made available in an application to the Authority.”

    Actually: The representatives from ABLE clarified that while some information would be hidden from the public domain, research on and results from field trials would be on display on a website for all to see, and the rest could be obtained using the RTI.

  3. Proposed: BRAI will be a centrally implemented body; State governments will have no say in its functioning and decision-making.

    Actually: A proposal for a State Biotechnology Regulatory Advisory Committee has been included in the BRAI Bill. The committee is to act as an intermediary agency between the State government and BRAI. It is not as if States have no say; however, to what extent will such a body empower the State?

  4. Proposed: Committees constituted by the BRAI Bill will approve and ratify applications from companies for the production and transportation of transgenic foodstuff.

    Actually: While committees will approve applications, a third-party (non-governmental) agency will be required to validate the results first. At the same time, the bill also okays all DSIR-approved labs for validation, which means a company with its own DSIR-approved lab can validate its own results (DSIR is the Department of Scientific and Industrial Research).

As it is, the bill is currently being examined by a Parliamentary Standing Committee on Agriculture, which would do well to ask for increased clarity on these issues. Dr. Rehman noted that even though the last deadline for public feedback, August 25, had passed, the Committee was considering extending the period for a second time (having earlier pushed it by 45 days from June 10). If and when a new date is announced, let’s unMonsanto.

I originally wrote this post for The Copernican, the science blog over The Hindu, on September 2, 2013.