R&D in China and India

“A great deal of the debate over globalization of knowledge economies has focused on China and India. One reason has been their rapid, sustained economic growth. The Chinese economy has averaged a growth rate of 9-10 percent for nearly two decades, and now ranks among the world’s largest economies. India, too, has grown steadily. After years of plodding along at an average annual increase in its gross domestic product (GDP) of 3.5 percent, India has expanded by 6 percent per annum since 1980, and more than 7 percent since 1994 (Wilson and Purushothaman, 2003). Both countries are expected to maintain their dynamism, at least for the near future.”

– Gereffi et al, ‘Getting the Numbers Right: International Engineering Education in the United States, China and India’, Journal of Engineering Education, January 2008

A June 16 paper in Proceedings of the National Academy of Sciences, titled ‘China’s Rise as a Major Contributor to Science and Technology’, analyses the academic and research environment in China over the last decade or so, and discusses the factors involved in the country’s increasing fecundity in recent years. It concludes that four factors have played an important role in this process:

  1. Large human capital base
  2. A labor market favoring academic meritocracy
  3. A large diaspora of Chinese-origin scientists
  4. A centralized government willing to invest in science

A simple metric they cite to make their point is the publication trends by country. Between 2000 and 2010, for example, the number of science and engineering papers published by China has increased by 470%. The next highest climb was for India, by 234%.

Click on the image for an interactive chart.
Click on the image for an interactive chart.

“The cheaters don’t have to worry they will someday be caught and punished.”

This is a quantitative result. A common criticism of the rising volume of Chinese scientific literature in the last three decades is the quality of research coming out of it. Dramatic increases in research output are often accompanied by a publish-or-perish mindset that fosters a desperation among scientists to get published, leading to padded CVs, falsified data and plagiarism. Moreover, it’s plausible that since R&D funding in China is still controlled by a highly centralized government, flow of money is restricted and access to it is highly competitive. And when it is government officials that are evaluating science, quantitative results are favored over qualitative ones, reliance on misleading performance metrics increases, and funds are often awarded for areas of research that favor political agendas.

The PNAS paper cites the work of Shi-min Fang, a science writer who won the inaugural John Maddox prize in 2012 for exposing scientific fraud in Chinese research circles, for this. In an interview to NewScientist in November of that year, he explains the source of widespread misconduct:

It is the result of interactions between totalitarianism, the lack of freedom of speech, press and academic research, extreme capitalism that tries to commercialise everything including science and education, traditional culture, the lack of scientific spirit, the culture of saving face and so on. It’s also because there is not a credible official channel to report, investigate and punish academic misconduct. The cheaters don’t have to worry they will someday be caught and punished.

At this point, it’s tempting to draw parallels with India. While China has seen increased funding for R&D…

Click on the chart for an interactive view.
Click on the chart for an interactive view.

… India has been less fortunate.

Click on the chart for an interactive view.
Click on the chart for an interactive view.

The issue of funding is slightly different in India, in fact. While Chinese science is obstinately centralized and publicly funded, India is centralized in some parts and decentralized in others, public funding is not high enough because presumably we lack the meritocratic academic environment, and private funding is not as high as it needs to be.

Click on the image for an interactive chart.
Click on the image for an interactive chart.

Even though the PNAS paper’s authors say their breakdown of what has driven scientific output from China could inspire changes in other countries, India is faced with different issues as the charts above have shown. Indeed, the very first chart shows how, despite the number of published papers having double in the last decade, we have only jumped from one small number to another small number.

“Scientific research in India has become the handmaiden of defense technology.”

There is also a definite lack of visibility: when little scientific output of any kind is accessible to 1) the common man, and 2) the world outside. Apart from minimal media coverage, there is a paucity of scientific journals, or they exist but are not well known, accessible or both. This Jamia Milia collection lists a paltry 226 journals – including those in regional languages – but it’s likelier that there are hundreds more, both credible and dubious. A journal serves as an aggregation of reliable scientific knowledge not just for scientists but also for journalists and other reliant decision-makers. It is one place to find the latest developments.

In this context, Current Science appears to be the most favored in the country, not to mention the loneliest. Then again, a couple fingers can be pointed at years of reliance on quantitative performance metrics, which drives many Indian researchers to publish in journals with very high impact factors such as Nature or Science, which are often based outside the country.

In the absence of lists of Indian and Chinese journals, let’s turn to a table used in the PNAS paper showing average number of citations per article compared with the USA, in percent. It shows both India and China close to 40% in 2010-2011.

The poor showing may not be a direct consequence of low quality. For example, a paper may have detailed research conducted to resolve a niche issue in Indian defense technology. In such a case, the quality of the article may be high but the citability of the research itself will be low. Don’t be surprised if this is common in India given our devotion to the space and nuclear sciences. And perhaps this is what a friend of mine referred to when he said “Scientific research in India has become the handmaiden of defense technology”.

To sum up, although India and China both lag the USA and the EU for productivity and value of research (albeit through quantitative metrics), China is facing problems associated with the maturity of a voluminous scientific workforce, whereas India is quite far from that maturity. The PNAS paper is available here. If you’re interested in an analysis of engineering education in the two countries, see this paper (from which the opening lines of this post were borrowed).

'Free Indian science': Responses, rebuttals and retrenchments

In the April 3 issue of Nature, Joseph Mathai and Andrew Robinson published a Comment on the afflictions of scientific research in India – and found the interference of bureaucracy to be chief among all ills. Most of the writers’ concerns were very valid, and kudos to them for highlighting how it was the government mismanaging science in India, not the institutes mismanaging themselves. In the May 8 issue of the same journal, three letters in response to the piece were published, under Correspondence, which brought to light two more issues just as important although not that immense, and both symptomatic of mismanagement that appears to border on either malevolence or stupidity, depending on your bent of mind.

Biswa Prasun Chatterji from St. Xavier’s, Mumbai, wrote about the “disastrous” decoupling of research and education in the country, mainly as a result of newly created research institutions in the 1940s and 1950s. These institutions led bright, young students away from universities, which as a result were parched of funds. The research bodies, on the other hand, fell prey to increasing bureaucratic meddling. Chatterji then points to an editorial in the November 1998 (vol. 75) issue of Current Science by P. Balaram, now the director of the Indian Institute of Science. In the piece, Prof. Balaram describes C.V. Raman as having been a firm believer in universities being the powerhouses of research, not any separate entities.

The latest issue of 'Current Science' (May 10, 2014)
The latest issue of ‘Current Science’ (May 10, 2014)

In 1932, C.V. Raman helped found Current Science after recognizing the need for an Indian science journal. In one of its first issues, an editorial appeared named ‘Retrenchment and Education’, in which the author, likely Prof. Raman himself, lays out the importance of having an independent body to manage scientific research in India. Because of its relevance to the issues at hand, I’ve reproduced it from the Current Science archives below.

The second letter’s contents follow from the first’s. Dhruba Saikia, Cotton College State University (Assam), and Rowena Robinson, IIT-Guwahati, ask for the country’s university-teaching to be overhauled. Many professors I’ve spoken to ask for the same thing but are turned to amusement after they realize that the problem has been left to fester for so long that the solution they’re looking for requires fixing our entire elementary education system. Moreover, after the forking of education and research described in Chatterji’s letter, it seems that universities were left to fend for themselves after their best teaching resources were drawn away by the government. Here is a paragraph from Saikia’s and Robinson’s letter:

Hundreds of thousands of students graduate from Indian universities each year. However, our own experience in selecting students indicates that many are ignorant of the basics, with underdeveloped reasoning skills and an inability to apply the knowledge they have.

There was also a third letter, this one critical of the Mathai-Robinson piece. Shobhana Narasimhan, a theoretical physicist from JNCASR, Bangalore, says that she is free to pursue “curiosity-driven science” and doesn’t have to spend as much time writing grant proposals as do scholars in the West, and so Mathai-Robinson are wrong on that front. At the same time, it seems from her letter that those things she has access to that her presumably better-equipped Occidental colleagues don’t could also be the result of a lack of control on research agendas and funding in India. In short, she might be free to pursue topics her curiosity moves her toward because the authorities don’t care (yes, this is a cynical point of view, but I think it must be considered).

So I emailed her and she replied.

“The quick answer to your question is I don’t think more overview of research funding is the answer to improving Indian science. My colleagues abroad spend more time writing proposals to get funding than actually carrying out research… I don’t think that is a good situation. Similarly getting tenure at an American university often depends on how much money you brought in. We don’t have such a situation (yet) and I think that is good.

We shouldn’t blindly copy foreign systems because they are by no means perfect. [Emphasis mine]

I have been on grant committees and I found good proposals always got funded. But I do agree that there is often much dead wood in many Indian departments, but that can also happen abroad.

I am aware that I may be speaking from a position of privilege since I work at one of the better funded institutes. Also as a theorist, I do not need much equipment.”

I would say Narasimhan’s case is the exception rather than the rule. Although I don’t have a background in researching anything (except for my articles and food prices), two points have been established with general consensus:

  1. The Rajiv Gandhi-era promise of funding for scientific R&D to the tune of 2% of GDP is yet to materialize. The fixation on this number ranges from the local – for unpaid students and ill-equipped labs – to the global – to keep up with investments in other developing countries.
  2. Even if there is funding, there is no independent body staffed with non-governmental stakeholders to decide which research groups get how much, leading to arbitrary research focus.

A case of Kuhn, quasicrystals & communication – Part IV

Dan Shechtman won the Nobel Prize for chemistry in 2011. This led to an explosion of interest on the subject of QCs and Shechtman’s travails in getting the theory validated.

Numerous publications, from Reuters to The Hindu, published articles and reports. In fact, The Guardian ran an online article giving a blow-by-blow account of how the author, Ian Sample, attempted to contact Shechtman while the events succeeding the announcement of the prize unfolded.

All this attention served as a consummation of the events that started to avalanche in 1982. Today, QCs are synonymous with the interesting possibilities of materials science as much as with perseverance, dedication, humility, and an open mind.

Since the acceptance of the fact of QCs, the Israeli chemist has gone on to win Physics Award of the Friedenberg Fund (1986), the Rothschild Prize in engineering (1990), the Weizmann Science Award (1993), the 1998 Israel Prize for Physics, the prestigious Wolf Prize in Physics (1998), and the EMET Prize in chemistry (2002).

As Pauling’s influence on the scientific community faded with Shechtman’s growing recognition, his death in 1994 did still mark the complete lack of opposition to an idea that had long since gained mainstream acceptance. The swing in Shechtman’s favour, unsurprisingly, began with the observation of QCs and the icosahedral phase in other laboratories around the world.

Interestingly, Indian scientists were among the forerunners in confirming the existence of QCs. As early as in 1985, when the paper published by Shechtman and others in the Physical Review Letters was just a year old, S Ranganathan and Kamanio Chattopadhyay (amongst others), two of India’s preeminent crystallographers, published a paper in Current Science announcing the discovery of materials that exhibited decagonal symmetry. Such materials are two-dimensional QCs with periodicity exhibited in one of those dimensions.

The story of QCs is most important as a post-Second-World-War incidence of a paradigm shift occurring in a field of science easily a few centuries old.

No other discovery has rattled scientists as much in these years, and since the Shechtman-Pauling episode, academic peers have been more receptive of dissonant findings. At the same time, credit must be given to the rapid advancements in technology and human knowledge of statistical techniques: without them, the startling quickness with which each hypothesis can be tested today wouldn’t have been possible.

The analysis of the media representation of the discovery of quasicrystals with respect to Thomas Kuhn’s epistemological contentions in his The Structure of Scientific Revolutions was an attempt to understand his standpoints by exploring more of what went on in the physical chemistry circles of the 1980s.

While there remains the unresolved discrepancy – whether knowledge is non-accumulative simply because the information founding it has not been available before – Kuhn’s propositions hold in terms of the identification of the anomaly, the mounting of the crisis period, the communication breakdown within scientific circles, the shift from normal science to cutting-edge science, and the eventual acceptance of a new paradigm and the discarding of the old one.

Consequently, it appears that science journalists have indeed taken note of these developments in terms of The Structure. Thus, the book’s influence on science journalism can be held to be persistent, and is definitely evident.