The Moon impact probe that went up on the PSLV C11 mission along with Chandrayaan 1. Credit: ISRO

For space, frugality is a harmful aspiration


‘ISRO’s Chandrayaan-2 mission to cost lesser than Hollywood movie Interstellar – here’s how they make it cost-effective’, staff, Moneycontrol, February 20, 2018. 

‘Chandrayaan-2 mission cheaper than Hollywood film Interstellar’, Surendra Singh, Times of India, February 20, 2018. 

The following statements from the Moneycontrol and Times of India articles have no meaning:

  1. The cost of ISRO’s Mars Orbiter Mission was less than the production cost of the film Gravity.
  2. The cost of ISRO’s Chandrayaan 2 mission is expected to be less than the production cost of the film Interstellar.

It’s like saying the angular momentum of a frog is lower than the speed of light. “But of course,” you’re going to say, “we’re comparing angular momentum to speed – they have different dimensions”. Well, the production cost of a film and mission costs also have different dimensions if you cared to look beyond the ‘$’ prefix. That’s because you can’t just pick up two dollar figures, decide which one’s lower and feel good about that without any social and economic context.

For example, what explains the choice of films to compare mission costs to? Is it because Gravity and Interstellar were both set in space? Is it because both films are fairly famous? Is it also because both films were released recently? Or is it because they offered convenient numbers? It’s probably the last one because there’s no reason otherwise to have picked these two films over, say, After Earth, Elysium, The Martian, Independence Day: Resurgence or Alien: Covenant – all of which were set in space AND cost less to make than Interstellar.

So I suspect it would be equally fair to say that the cost of C’yaan 2 is more than the budget of After Earth, Elysium, The Martian, Independence Day: Resurgence or Alien: Covenant. But few are going to spin it like this because of two reasons:

  1. The cost of anything has to be a rational, positive number, so saying cost(Y) is less than cost(X) would imply that cost(X) > cost(Y) ≥ 0; however, saying cost(Y) is greater than cost(X) doesn’t give us any real sense of what cost(Y) could be because it could approach ∞ or…
  2. Make cost (Y) feel like it’s gigantic, often because your reader assumes cost(Y) should be compared to cost(X) simply because you’ve done so

Now, what comparing C’yaan 2’s cost to that of making Interstellar achieves very well is a sense of the magnitude of the number involved. It’s an excellent associative mnemonic that will likely ensure you don’t forget how much C’yaan 2 cost – except you’d also have to know how much Interstellar cost. Without this bit of the statement, you have one equation and two variables, a.k.a. an unsolvable problem.

Additionally, journalists don’t use such comparisons in other beats. For example, when the Union budget was announced on February 1 this year, nobody was comparing anything to the production costs of assets that had a high cultural cachet. Rs 12.5 crore was Rs 12.5 crore; it was not framed as “India spends less on annual scholarships for students with disabilities than it cost to make Kabali“.

This suggests that such comparisons are reserved by some journalists for matters of space, which in turn raises the possibility that those journalists, and their bosses, organisations and readers, are prompted to think of costs in the space sector as something that must always be brought down. This is where this belief becomes pernicious: it assumes a life of its own. It shouldn’t. Lowering costs becomes a priority only after scientists and engineers have checked tens, possibly hundreds, of other boxes. Using only dollar figures to represent this effort mischaracterises it as simply being an exercise in cost reduction.

So, (risking repetition:) comparing a mission cost to a movie budget tells us absolutely nothing of meaning or value. Thanks to how Moneycontrol’s phrased it, all I know now is that C’yaan 2 is going to cost less than $165 million to make. Why not just say that and walk away? (While one could compare $165 million to mission costs at other space agencies, ISRO chief K. Sivan has advised against it; if one wants to compare it to other PSUs in India, I would advise against it.) The need to bring Interstellar into this, of course, is because we’ve got to show up the West.

And once we’re done showing up the West, we still have to keep. Showing up. The West. Because we’re obsessed with what white people do in first-world countries. If we didn’t have them to show up, who knows, we’d have framed ISRO news differently already because we’d have been able to see $165 million for what it is: a dimensionless number beyond the ‘$’ prefix. Without any other details about C’yaan 2 itself, it’s pretty fucking meaningless.

Please don’t celebrate frugality. It’s an unbecoming tag for any space programme. ISRO may have been successful in keeping costs down but, in the long run, the numbers will definitely go up. Frugality is a harmful aspiration vis-à-vis a sector banking on reliability and redundancy. And for fuck’s sake, never compare: the act of it creates just the wrong ideas about what space agencies are doing, what they’re supposed to be doing and how they’re doing it. For example, consider Sivan’s answer when asked by a Times of India reporter as to how ISRO kept its costs down:

Simplifying the system, miniaturising the complex big system, strict quality control and maximising output from a product, make the missions of Indian space agency cost-effective. We keep strict vigil on each and every stage of development of a spacecraft or a rocket and, therefore, we are able to avoid wastage of products, which helps us minimise the mission cost.

If I didn’t know Sivan was saying this, I’d have thought it was techno-managerial babble from Dilbert (maybe with the exception of QC). More importantly, Sivan doesn’t say here what ISRO is doing differently from other space agencies (such as, say, accessing cheaper labour), which is what would matter when you’re rearing to go “neener neener” at NASA/ESA, but sticks to talking about what everyone already does. Do you think NASA and ESA waste products? Do they not remain vigilant during each and every stage of development? Do they not have robust QC standards and enforcement regimes?

Notice here that Sivan isn’t saying “we’re doing it cheaper than others”, only that doing these things keeps the space agency “cost-effective”. Cost-effective is not the same as frugal.

Featured image: The Moon impact probe that went up on the PSLV C11 mission along with Chandrayaan 1. Credit: ISRO.

It’s time for ISRO to reach for the (blue) sky

The Wire
May 19, 2015

Almost 40 years after the launch of Aryabhata, the Indian Space Research Organisation successfully placed another satellite into orbit, this time around Mars – becoming the world’s first space agency to have done so in its debut attempt. There are many similarities between the April-1975 launch of Aryabhata, India’s first satellite, and the September-2014 orbit-insertion of the Mars Orbiter Mission. But if the Mars mission suggests India has come a long way, ISRO’s commitment to blue-sky research – putting financial and scientific resources into projects that do not have immediate or even obvious applications – is still not apparent.

Aryabhata was launched at a time when the socio-political climate in India was fraught with uncertainty, and technology was barely a blip on the horizon as the promised secret solution. There had been widespread skepticism about what a scientific satellite – which at the time cost Rs.5 crore to build – could do for a “cow-dung economy”. A skepticism of the same flavour most recently surrounded the Mars Orbiter Mission, with many asking how it could help alleviate poverty in the country.

Symbolic victories

Even though astronomers had planned to use Aryabhata conduct experiments in astrophysics, the satellite suffered an electrical failure after four days in orbit. Nonetheless, it was hailed a success because it was one symbolically. The man responsible for its launch, Vikram Sarabhai, had inspired a nation that anything was possible should one apply herself or himself to it. Since 1962, with the establishment of the Thumba Equatorial Rocket Launching Station in Kerala, Sarabhai had rapidly inculcated a generation of scientists fluent in the engineering and physics of building and launching rockets with that belief. By 1975, India had been brought to the doorstep of full-fledged space research.

Sadly, Sarabhai passed away in 1970, although by then he was able to found ISRO (superseding the Indian National Committee for Space Research set up in 1962) in 1969. But despite being born of the seemingly entrepreneurial seed that was Sarabhai’s vision, ISRO seldom engaged in blue-sky, curiosity-driven research – where practical applications are not apparent while the potential for discovering new applications of science is great. This reticence is all the more glaring given the fact that ISRO is one of the few institutions in the country that remains fairly removed from bureaucratic interference despite being substantially funded by the central government.

Despite its open-ended mandate, ISRO has only pursued goals that have well-defined implications, such as expanding the scope of our meteorology, communication and navigation technologies. Agreed, it would have been hard not to focus on such applications-driven nearer-term goals — nearer at least than the prolonged periods of hopefulness often required for blue-sky research — while the government was absorbed in capacity-building in the 1970s.

However, what’s the point of continuing to do predominantly that until the 2010s? For the government, the agency has become the leading provider of solutions to problems in weather-forecasting and communication. Even as Sarabhai had aspired to free India from the clutches of economic frugality through its space program, ISRO had inculcated a space program bereft of scientific curiosity – a frugality of the imagination.

Questioning Sarabhai

It is also worth asking to what end Sarabhai had himself looked to space. The answer is hard to divine, but important to know for what it can tell us about the history of scientists’ ambitions in India. While he believed that space research and, in time, exploration, could make India prosper, did he really support blue-sky research? Or was that simply us extrapolating his ambitions? Did Sarabhai only ever think of space research in terms of pressing it into the nation’s questions of poverty and economic development, or did he one day want to land an astronaut on Mars? There is a telling paragraph in the book A Brief History of Rocketry in ISRO by P Radhakrishnan and PV Manoranjan Rao:

Independent India was lucky to have Jawaharlal Nehru as its first prime minister, for he shared a common ideal with [Homi] Bhabha and Sarabhai. He believed that modern science and technology were indispensable to the development of the country. He declared: ‘Science alone can solve the problems of hunger and poverty, in sanitation and illiteracy, of superstition and deadening custom and tradition, of vast resources running to waste, of a rich country inhabited by starving people’.

This bears many similarities to the relationship ISRO enjoyed with subsequent heads of state. Most recently, Narendra Modi took great pride in the success of the Mars Orbiter Mission in September and the successful launch of the GSLV Mk-III launch vehicle in December, both 2014. He also called for ISRO to launch a SAARC satellite, a communication satellite to service South Asia’s nations, which the agency said in March would be ready in 18 months.

However, from 1975 until now in 2015, neither the government nor the agency has professed much interest in defining and pursuing long-term science programs. In that period, ISRO has launched around 60 non-scientific (indigenous) satellites and fewer than 10 scientific satellites. But over 40 years, the problem has evolved to one of systematicity. The problem is not that we haven’t had more scientific satellites but that we are missing a coherent agenda for scientific research. If such an agenda exists, and one hopes it does, it has remained hidden thanks to ISRO’s baffling lack of public outreach.

The 1975 agenda

If the people doubted the applications of Aryabhata and the Mars Orbiter at the times of their launches, they were also quickly won over by their eventual symbolic victories. No doubt these missions were among the most significant of their times, but going ahead, ISRO will have to translate the symbolism to achievements that are better grounded in research agendas and more meaningful to the country’s scientific research community, instead of scattering them across the landscape of our enterprise. A crucial part of this involves public outreach – putting out constant and frequent updates like it did leading up to, and for a bit after, the Mars Orbiter Mission.

Aryabhata’s designation as a satellite for astrophysics research was quickly forgotten as its four-day stint in space was used to herald a new era of resource-surveying and communications satellites. Similarly, the launch of the GSLV Mk-III was not accompanied by any discussions by ISRO on how it was going to leverage the increased payload capacities the advanced launch rocket brought. Finally, while the Mars Orbiter Mission can be seen as a demonstration of ISRO’s capabilities in executing interplanetary missions, the agency has failed to detail how precisely it will be useful for future missions or, in fact, what those missions might be.