We don’t have a problem with the West, we’re just obsessed with it

When you don’t write about scientific and technological research for its inherent wonderfulness but for its para-scientific value, you get stories born out of jingoism masquerading as a ‘science’ piece. Take this example from today’s The Hindu (originally reported by PTI):

A new thermal spray coating technology used for gas turbine engine in spacecraft developed by a Rajasthan-based researcher has caught the attention of a NASA scientist, an official said.

Expressing his interest in the research, James L. Smialek, a scientist from NASA wrote to Dr. Satish Tailor after it was published in the journal Ceramics International and Thermal Spray Bulletin, said S.C. Modi, the chairman of a Jodhpur-based Metallizing Equipment Company.

This story is in the news not because a scientist in Rajasthan (Tailor) developed a new and better spray-coating technique. It’s in the news because a white man* (Smialek) wrote to its inventor expressing his interest. If Smialek hadn’t contacted Tailor, would it have been reported?

The article’s headline is also a bit off: ‘NASA keen on India-made technology for spacecraft’ – but does Smialek speak for NASA the organisation? He seems to be a senior research scientist there, not a spokesperson or a senior-level decision-maker. Additionally, “India-made”? I don’t think so. “India-made” would imply that a cohesion of Indian institutions and laboratories are working to make and utilise this technology – whereas while we’re fawning over NASA’s presumed interest, the story makes no mention of ISRO. It does say CSIR and DRDO scientists are “equally” interested but to me “India-made” would also then beggar the question: “Why cut funding for CSIR?”

Next, what’s a little funny is that while the Indian government is busy deriding Western ‘cultural imports’ ruining our ‘pristine’ homegrown values, while Indian ministers are constantly given to doubting the West’s scientific methods, some journalists are using the West’s acknowledgment to recognise Indian success stories. Which makes me think if what we’re really doing is being obsessed with the West instead of working towards patching the West’s mistakes, insofar as they are mistakes, with our corrections (very broadly speaking).

The second funny thing about this story is that, AFAIK, scientists writing in one part of the world to those in other is fairly regular. That’s one of the reasons people publish in a journal – especially in one as specific as Ceramics International: so people who are interested in research on the same topic can know what their peers are up to. But by reporting on such incidents on a one-off basis, journalists run the risk of making cross-country communication look rare, even esoteric. And by imbibing the story with the quality of rareness, they can give the impression that Smialek writing to Tailor is something to be proud of.

It’s not something to be proud of for this reason simply because it’s an artificial reason. It’s a reason that doesn’t objectively exist.

Nonetheless, I will say that I’m glad PTI picked up on Tailor’s research at least because of this; akin to how embargoes are beacons pointing journalists towards legitimate science stories (although not all the time), validation can also come from an independent researcher expressing his interest in a bit of research. However, it’s not something to be okay with in the long-term – if only because… doesn’t it make you wonder how much we might not know about what researchers are doing in our country simply because Western scientists haven’t written to some of them?

*No offence to you, James. Many Indians do take take some things more seriously because white people are taking it seriously.

Featured image credit: skeeze/pixabay.

Credit: xmex/Flickr, CC BY 2.0

Dealing with plagiarism? Look at thy neighbour

Four doctors affiliated with Kathmandu University (KU) in Nepal are going to be fired because they plagiarised data in two papers. The papers were retracted last year from the Bali Medical Journal, where they had been published. A dean at the university, Dipak Shrestha, told a media outlet that the matter will be settled within two weeks. A total of six doctors, including the two above, are also going to be blacklisted by the journal. This is remarkably swift and decisive action against a problem that refuses to go away in India for many reasons. But I’m not an apologist; one of those reasons is that many teachers at colleges and universities seem to think “plagiarism is okay”. And for as long as that attitude persists, academicians are going to be able to plagiarise and flourish in the country.

One of the other reasons plagiarism is rampant in India is the language problem. As Praveen Chaddah, a former chairman of the University Grants Commission, has written, there is a form of plagiarism that can be forgiven – the form at play when a paper’s authors find it difficult to articulate themselves in English but have original ideas all the same. The unforgivable form is when the ideas are plagiarised as well. According to a retraction notice supplied by the Bali Medical Journal, the KU doctors indulged in plagiarism of the unforgivable kind, and were duly punished. In India, however, I’m yet to hear of an instance where researchers found to have been engaging in such acts were pulled up as swiftly as their Nepali counterparts were, or had sanctions imposed on their work within a finite period and in a transparent manner.

The production and dissemination of scientific knowledge should not have to suffer because some scientists aren’t fluent with a language. Who knows, India might already be the ‘science superpower’ everyone wants it to be if we’re able to account for information and knowledge produced in all its languages. But this does not mean India’s diversity affords it the license to challenge the use of English as the de facto language of science; that would be stupid. English is prevalent, dominant, even hegemonic (as K. VijayRaghavan has written). So if India is to make it to the Big League, then officials must consider doing these things:

  1. Inculcate the importance of communicating science. Writing a paper is also a form of communication. Teach how to do it along with technical skills.
  2. Set aside money – as some Australian and European institutions do1 – to help those for whom English isn’t their first, or even second, language write papers that will be appreciated for their science instead of rejected for their language (unfair though this may be).
  3. DO WHAT NEPAL IS DOING – Define reasonable consequences for plagiarising (especially of the unforgivable kind), enumerate them in clear and cogent language, ensure these sanctions are easily accessible by scientists as well as the public, and enforce them regularly.

Researchers ought to know better – especially the more prominent, more influential ones. The more well-known a researcher is, the less forgivable their offence should be, at least because they set important precedents that others will follow. And to be able to remind them effectively when they act carelessly, an independent body should be set up at the national level, particularly for institutions funded by the central government, instead of expecting the offender’s host institution to be able to effectively punish someone well-embedded in the hierarchy of the institution itself.

1. Hat-tip to Chitralekha Manohar.

Featured image credit: xmex/Flickr, CC BY 2.0.

Credit: Free-Photos/pixabay

On cancers, false balance and the judiciary

Climate change has for long been my go-to example to illustrate how absolute objectivity can sometimes be detrimental to the reliability of a news report. Stating that A said “Climate change is real” and that B replied “No, it isn’t” isn’t helping anyone even though it has voices from both sides of the issue. Now, I have a new example: cancer due to radiation from cellphone towers. (And yes, there seems to be a pattern here: false balance becomes a bigger problem when a popular opinion is on the verge of becoming unpopular thanks new scientific discoveries.)

This post was prompted by a New York Times article published January 5, 2018. Excerpt:

From 1991 to 2015, the cancer death rate dropped about 1.5 percent a year, resulting in a total decrease of 26 percent — 2,378,600 fewer deaths than would have occurred had the rate remained at its peak. The American Cancer Society predicts that in 2018, there will be 1,735,350 new cases of cancer and 609,640 deaths. The latest report on cancer statistics appears in CA: A Cancer Journal for Clinicians. The most common cancers — in men, tumours of the prostate; in women, breast — are not the most common causes of cancer death. Although prostate cancer accounts for 19 percent of cancers in men and breast cancer for 30 percent of cancers in women, the most common cause of cancer death in both sexes is lung cancer, which accounts for one-quarter of cancer deaths in both sexes.

This is a trend I’d alluded to in an earlier post: that age-adjusted cancer death rates in the US, among both men and women, have been on a steady downward decline since at least 1990 whereas, in the same period, the number of cellphone towers has been on the rise. More generally, scientific studies continue to fail to find a link between radio-frequency emissions originating from smartphones and cancers of the human body. Source: this study and this second study.

The simplest explanation remains that these emissions are non-ionising – i.e. when they pass through matter, they can excite electrons to higher energy levels but they can’t remove them entirely. In other words, they can cause temporary disturbances in matter but they can’t change its chemical composition. Some have also argued that cellphone radiation can heat up tissues in the body enough to damage them. This is ridiculous: apart from the fact that the human body is a champion at regulating internal heat, imagine what’s happening the next time you get a fever or if you go to Delhi in May.

Those who continue to believe cellphone towers can damage our genes do so for a variety of reasons – including poor outreach and awareness efforts (although I’m told TRAI has done a lot of work on this front) and, more troublingly, the judiciary. By not ensuring that the evidence presented before them is held to higher scientific standards, Indian courts have on many occasions admitted strange arguments and thus pronounced counterproductive verdicts.

For example, in April 2017, the Supreme Court (of India) directed a BSNL cellphone tower in Gwalior be taken down after one petitioner claimed radiation from the structure had given him Hodgkin’s lymphoma. If the court was trying to err on the side of caution: what about the thousands of people now left with poorer connectivity in the area (and who are not blaming their ailments on cellphone tower radiation)?

This isn’t confined to India. In early 2017, Joel Moskowitz, a professor at the Berkeley School of Public Health, filed a suit asking for the state of California to release a clutch of documents describing cellphone safety measures. Moskowitz believes that cellphone radiation causes cancer, and that Big Telecom has allegedly been colluding with Big Government to keep this secret away from the public.

In December 2017, a state judge ruled in Moskowitz’s favour and directed the California Department of Public Health (CDPH) to release a “Guidance on How to Reduce Exposure to Radiofrequency Energy from Cell Phones” – a completely unnecessary set of precautions that, by the virtue of its existence, reinforces a gratuitous panic. By all means, let those who believe in this drivel consume this drivel, but it shouldn’t have been at the expense of making a mockery of the court nor should it have been effected by pressing the CDPH’s reputation to endorse the persistence of pseudoscience. What a waste of time and money when we have bigger and more legitimate problems on our hands.

… which brings us to climate change and the perniciousness of false balance. On December 20, 2017, Times of India published an article titled ‘Can mobile phones REALLY increase the risk of brain cancer? Or is it too far-fetched?’. It quotes studies saying ‘yes’ as well as those saying ‘no’ but it doesn’t contain any attributions, citations or hyperlinks. Sample this:

Lab studies where animals are exposed to radio frequency waves suggest that as the waves are not that strong and cannot break the DNA, they cannot cause cancer. But some other studies claim that that they can damage the cells up to some level and this can support a tumour to grow.

It also contains ill-conceived language, for example by asking how radio-frequency waves become harmful before it goes on to ‘discuss’ whether they are harmful at all, or by saying the waves are “absorbed” in the human body. But most of all, it’s the intent to remain equivocal – instead of assuming a rational position based on the information and/or knowledge available on the subject – that’s really frustrating. This is no different from what the Californian judge did or what the SC of India did: not consider evidence of better quality while trying to please everyone.

Featured image credit: Free-Photos/pixabay.

Credit: DieElchin/pixabay

To watch ‘The Post’

I read a few reviews of The Post. Based on what the critics are saying, it seems the film has at least the potential to raise the spirits of many journalists today who could use a leg up. That said, I do resent that some of my friends and peers think I should be more excited about the film. This is how my conversations with them have generally gone.

§

Have you watched The Post?

No.

OMG, why not?!

You mean you’d like me to be excited about watching a film about a story based in the industry I work day in, day out but about which you don’t give a damn unless it’s brought to life by a pair of pompous (not to mention white) Hollywood actors while also blissfully ignorant of the fact that dangerous and consequential choices of the kind the journalists probably make in the film are made on a daily basis by journalists in many parts of the world?

… yeah.

Or do you mean have I watched the film about a story based in the industry I work day in, day out and I’m quite likely to know about but you wouldn’t acknowledge that until I joined the rest of you, went to the movies and finally walked away feeling its makers had mangled both the spirit of what had actually happened and reduced it down to the valour of a few people, when in fact a lot more hearts and minds went into achieving what they had, just so a small group of well-established actors could draw all the attention – while you walk away feeling the film was how things had actually happened and that I’m the cynic whose cynicism won’t switch off?

I’m going to walk away from you now.

Featured image credit: DieElchin/pixabay.

Limitations of the Finkbeiner test

This post was republished on The Wire on January 8, 2018.

The Finkbeiner test, named for science writer Ann Finkbeiner, was created to check whether a profile of a female scientist published by a mainstream news outlet was produced in the first place because its subject was a woman. It’s a good check to make when writing about a professional scientist’s work; if you’re going to write the piece because the subject’s a woman and not because you think her work is awesome, then you run the risk of presenting the woman as extraordinary for choosing to be a scientist. However, more than being a good check, it could also be too subtle an issue to expect everyone to be conscious about – or to abide by.

As The Life of Science initiative has repeatedly discussed, there are many systemic barriers for India’s women in science, all the way from each scientist having had few role models to admire growing up to not being able to stay in academia because institutional policies as well as facilities fall short in being able to retain them. And apart from working towards making these deficiencies known to more people, women have also been leading the fight to patch them once and for all. As a result, talking about successful women scientists without also discussing what needed to fall into place for them could ring hollow – whereas the Finkbeiner test seeks to eliminate just such supposedly miscellaneous information.

For example, a 2015 report by Ram Ramaswamy and Rohini Godbole and a 2016 article by Aashima Dogra and Nandita Jayaraj both stressed the need for affirmative action on part of the government so more women are retained in scientific pursuits at the higher levels. This means science journalism that focuses on a working woman scientist because she belongs to a particular gender and not on her scientific research at the outset becomes useful in the eyes of young scientists but also quickly fails the Finkbeiner test. Does this mean the piece becomes detrimental? I’d think not, especially because it would certainly serve the function of holding the people charged with instituting policy and infrastructural corrections accountable.

For another example, I’ve learned from several The Life of Science profiles that one reason many of the women who have become successful scientists with faculty-level positions were backed up by supportive families and partners. One profile in particular – of Mayurika Lahiri – stood out because it discussed her research as a cancer biologist as well as her achievement in setting up a full-fledged daycare centre in IISER Pune. However, the Finkbeiner test penalises an article on a woman scientist if it discusses her spouse’s occupation, her childcare arrangements or the fact that she could be a role model.

Two notes at this point. First: Some women might not like to be characterised in a way that the Finkbeiner test says they shouldn’t be characterised as. In such cases, the journalist must and will respect their choice. Second: To be fair to The Life of Science, the Finkbeiner test is intended only for mainstream publications and not specialist projects. At the same time, this caveat could come off as short-sighted because it aspires to make a stronger distinction between changes that remain to be effected for (India’s) women in science to have it as good as its men already do and the outcomes of those changes that have been implemented well. Persistence with the former results in the latter; the latter encourages the former to continue.

In countries where women receive more institutional support than they do in India, it’s possible to expect meaningful insights to arise out of applying the Finkbeiner test to all mainstream profiles of women in science. In other countries, the test could be altered such that,

  1. A discussion of women’s needs is treated on an equal footing with their science instead of having to ignore one or the other – This way, writers will have an opportunity to make sure their readers don’t take the pervasiveness of the conditions that helped women succeed for granted while also highlighting that their work in and of itself is good, and
  2. Profiles of male scientists include questions about what they’re doing to make science a non-problematic pursuit for people of other (or no) genders, if only to highlight that men often have a mission-critical role to play in this endeavour.

Featured image credit: bones64/pixabay.

Still with WordPress, but from .com to .org

As some of you might know, I’ve been having some issues with WordPress.com in terms of their UX, their service as well as a few outages. I’ve been on the platform for almost a decade now, during which my account has been suspended twice for different reasons and, more recently, my blog was taken down for brief periods owing to disputes over content copyright. I know WordPress is not malicious – but it has certainly been inept, especially given the changes the platform has been undergoing in preparation for their major Gutenberg release. But I’ve reached a point where I’m no longer okay with tolerating such ineptitude.

So on January 5, 2018, I moved my blog out of WordPress.com to a self-hosted WordPress setup with KnownHost, a managed WordPress hosting provider. They had a bulk purchase sale going, so I bought a 12-month subscription for about $100. This is the new blog – with all the archives intact. I’m planning to shut down Gaplogs.net permanently on February 1, 2018. I’ve also moved most of my subscribers over to the new blog except for those who signed up to read my blog via email. These subscribers have now been moved to MailChimp (and that’s how you’re getting this email). Please make sure the emails don’t end up in your spam folder. There’s also an option to sign up in the sidebar in case you want to get on board with a different ID.

Happy 2018!

‘Mantra sciences’ is just poor fantasy

I don’t know how the author of a piece in the Times of India managed to keep a straight face when introducing a school based on Vedic rituals that would “show the way” to curing diseases like cancer. Even the more honest scientific studies that are regularly accompanied by press releases proclaiming “the paper is a step in the right direction of curing cancer” tend to be unreliable thanks to institutional and systemic pressures to produce sensational research. But hey, something written many thousands of years ago might just have all the answers – at least according to Jaya Dava, the chairperson of the Rajasthan Sanskrit Academy. Excerpt:

Proposed in 2005, the Rajasthan government’s research institute to study the science of ancient Hindu texts, the first-of-its-kind in the country, is all set become operational soon. On Monday, the Research Institute of Mantra Sciences (RIMS) or the Rajasthan Mantra Pratishtan, under the Jagadguru Ramanandacharya Rajasthan Sanskrit University (JRRSU), called for applications from eligible candidates for various posts, including that of teachers. The then education minister, Ghanshyam Tiwari, had first proposed the institute in 2005. While presenting the concept, inspired by ‘Manusmriti’, the ancient Hindu book of law, Tiwari had quoted a verse from the text, ‘Sarvam vedaat prasiddhyati’ (Every solution lies in Vedas), in the state assembly.

So the RIMS is being set up to further the ideals enshrined in the Manusmriti, the document that supposedly also talks about the caste system and how anyone trapped in it has doomed all their descendants to never being able to escape from its dystopian rules. Second: apart from having been mooted by a state’s education minister, the Jagadguru Ramanandacharya Rajasthan Sanskrit University is a state institution utilising public taxes for its operation. Don’t the people get a say in what kind of magic-practising institutions their government is allowed to set up? Hogwarts was at least entertaining and nicely written.

I’m just anguished about the Hindutva brigade’s poor imagination when it comes to epic fantasy. For example, according to Dava, “reciting verses such as ‘Achutaya Namaha’, ‘Anantaya Namaha’ and ‘Govindaya Namaha’ have helped in treating cancer patients.” Helped in what way? If we had a quantifiable measure that other people could try to replicate, we’d be working towards having an internally consistent system of magic – but no.

Also, in a world without cancer, is anybody even thinking about the numerous emergent possibilities? For starters, by 2020, we’re going to have $150 billion left unspent because cancer drugs are going to be useless. And India’s B-grade film industries are going to have to come up with new ways to make forlorn ex-lovers spurt blood and die. And David Bowie and Alan Rickman would still be alive. And chanting hippies would be the new millionaire oncologists. The possibilities are endless. More, according to Rajendra Prasad Mishra, who headed RIMS for a decade from 2006,

“The answer as to how a simple line drawn by Lord Ram prevented the mighty king Ravana from crossing over lies in Vedic science. This ancient wisdom, if discovered, can safeguard India from our enemies by drawing lines across the borders. The chanting of mantras, with the right diction, pronunciation and by harnessing cosmic energy, can help in condensing vapours and bringing rain. This can solve the major problem of water scarcity.”

But conveniently, this wisdom is considered “lost” and has to be “found” at a great cost to a lot of people while the people doing the finding look like they’re doing something when they’re really, really not. Maybe its writers wrote it when they were 20, looked back at it when they were 40, figured it was a lot of tosh and chucked it into the Saraswati. I’ve no issues with magic myself, in fact I love fantasy fiction and constantly dream of disappearing into one, but I sure as hell don’t want to exist in a realm with infinite predictability shoved down everyone’s throats.

Notice also how people are completely okay with trusting someone else who says it’s a good idea to invest a lot of money in a scheme to make sense of which very few people are supposed to possess the intellectual resources, a risk they’re willing to take anyway because it might just them more powerful – while they actively stay away from cryptocurrencies like bitcoins because they suspect it might be a Ponzi scheme? Indeed, the powers that be must be vastly more resourceful in matters of the intellect than I to be able to resolve this cosmic cognitive dissonance.

Featured image credit: stuarthampton/pixabay.

Credit: PublicDomainPictures/pixabay

Happy new year!

2017 was a blast. Lots of things happened. The world became a shittier place in many ways and better in a few. Mostly, Earth just went around the Sun once more, and from what we know, it’s going to be doing that for a while. But here’s to a roaring 2018 anyway!

As of January 2018, this blog is nine years old. Thanks for staying with me on this (often meandering) journey, even when its name changed a billion times in the middle of 2017. The interest many of you have been nice enough to express vocally is what has kept me going. I published 113 blog posts this year, up a 100% from 2016. I also had 70 articles published in The Wire. I’m quite happy with that total of 183.

I think I will continue writing more on my blog than for The Wire through the first half of 2018 because editing freelancers’ submissions will continue to take up most of my time.

This is a consequence of two things I tried to do differently last year: publish more reported stories and get more writers. So given the limited monthly budget, and the fact that opinions are cheaper than reports, the published story count (3901) was lower than that in 2016 – but the stories themselves were great, and we also got almost twice as many science writers to write them.

In 2018, I hope to expand the science journalism team at The Wire. We’ve also been planning a new-look section with a more diverse content offering. I’ll keep you all posted on how that goes. (If you wish to work with us, apply for a suitable position here.)

Personally, 2017 was full of ups and downs but since it ended mostly on the up, that’s how I’m going to remember the year. I did little to quell my anxieties and got back on antidepressants – but then I also moved to Chennai and started playing Dungeons & Dragons. Life’s good.

I’ll see you on the other side soon.

1. This excludes reports syndicated from publications The Wire has a content-sharing agreement with, republished content and agency copies.

Featured image credit: PublicDomainPictures/pixabay.