CNR Rao, a faceted gem

Inquisitions are sure to follow if you’ve won India’s highest civilian honor on the back of a little-known career. At the same time, if that career’s been forged on scientific research, then blame all that’s little-known on media apathy, flick away what fleeting specks of guilt persist, and congratulate the winner for years of “great work” (which of course you didn’t hear about till news portals “broke” the news – even to the point of getting things, as usual, terribly wrong).

Yesterday, it was announced Prof. C.N.R. Rao of the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), a chemist, was being awarded the Bharat Ratna for his prolific research and, presumably, his contributions to science education in India. In a career spanning more than 50 years, Rao helped set up the JNCASR and was pivotal in establishing the five IISERs (Kolkata, Pune, Mohali, Bhopal and Thiruvananthapuram). In between, he was the Chairman of the Scientific Advisory Council for four Indian Prime Ministers: Rajiv Gandhi, Deve Gowda, I.K. Gujral and Manmohan Singh.

As a researcher, Rao works in solid-state and structural chemistry and superconductivity, with more than 1,500 published papers and an h-index of 90. He was made a Fellow of the Royal Society in 1982, received the Hughes Medal in 2000; the Indian Science Award in 2004; and the French Legion of Honour in 2005. He’s received various other awards, too, and has honorary PhDs from over 50 universities the world over. All these distinctions, and more, have been covered by journalists in their reports published, and continuing to be published, hours after the PMO announced that he’d be conferred India’s highest civilian award.

What was conspicuously missing from the coverage was Rao’s involvement in a series of plagiarism charges levelled against him for papers of his published through 2011 and 2012. Both of India’s two most widely-read English dailies didn’t include it in their reports, while a third, smaller publication had a mention in its last line (I didn’t bother to check other publications – but imagine, between the two biggies, some 9.8 million readers in the country haven’t been reminded about what Rao was engaged in). Why would news-channels choose to leave it out? Some reasons could be…

  1. Rao didn’t engage in plagiarism, just that one of his co-authors, a student tasked with writing the introductory elements of the paper, did.
  2. Rao has published over 1,500 papers; even in the papers where plagiarised content was found, the experiments and results were original. These charges are, thus, freak occurrences.
  3. It’s a tiny blip on an illustrious career, and with a Bharat Ratna in the picture, minor charges of plagiarism can be left out because they don’t contribute to the “effect” of the man.

This is where I’d remind you about a smart Op-ed by IMS researcher Rahul Siddharthan that appeared in The Hindu on March 9, 2012. Here’s a line from the paper that points to the concerns I have with Rao:

Unfortunately, the senior authors (Rao, who was the last author, and S.B. Krupanidhi of IISc, Bangalore) did three other things. They both publicly blamed the first author, a graduate student of Krupanidhi. They both denied that it was plagiarism. And Rao declared that he had had little personal involvement with this paper.

If any of the three excuses listed above are being cited by journalists, Siddharthan’s piece defeats them, instead drawing forth a caricature of Rao and his character that seem disagreeable. I would like to think that Rao was simply absent-minded, but I’m unable to. Siddharthan’s words make Rao sound as if he was disgruntled with an unexpected outcome, that it was as a result of simply neglecting to supervise work that he wanted to end up taking credit for – no matter that the experiments and results presented in the paper were original.

To wit, here’s another paragraph from Siddharthan’s piece:

Rao and his colleagues were undoubtedly aware of the previous paper, since they plagiarised from it; yet they cite it only once, briefly and without discussion, in the introduction. Not only do they fail to compare their results with a very relevant prior publication: they nowhere even hint to the reader that such work exists.

To be clear, my grouse isn’t with C.N.R. Rao winning the Bharat Ratna but the lightness with which newspapers have chosen to suppress the fact that Rao, in some way, was unaware (or, equally bad, aware) about plagiarised content in his work.

Worse, in an article by K.S. Jayaraman in Nature in February 2012, Rao speaks about the importance of good language skills among students, and the need for an institutional mechanism to enforce it. In an interview published in Current Science in May 2011, he talks about the importance of grooming youngsters and providing the supportive environment he thinks mandatory for them to succeed. Is this Rao leading by example, then, to show the dire need for such mechanisms and environments?

*

While an exalted picture of him persists into Day 2 in the Indian mainstream media, I remember that at the moment of announcement, many of my scientist- and science-writing-friends expressed mild confusion over the choice. First thought: Surely there were others? A few minutes later: But why? An hour later: Is he in the league of Raman or Kalam? These giants of Indian science and technology commanded a public perception that transcended their work.

Then again, are all these questions being raised simply in the wake of years of media apathy toward Rao’s work in the public sphere?

'No string theorists in non-elite institutions'

Shiraz Naval Minwalla, a professor of theoretical physics at the Tata Institute of Fundamental Research (TIFR), Mumbai, won the New Horizons in Physics Prize for 2013 on November 5. The prize – which recognizes ‘promising researchers’ and comes with a cash prize of $100,000 – is awarded by the Fundamental Physics Prize Foundation, set up by Russian billionaire Yuri Milner in 2012.

Shiraz has been cited for his contributions to the study of string theory and quantum field theory, particularly for improving our understanding of the equations governing fluid dynamics, and using them to verify the predictions of all quantum field theories as opposed to a limited class of theories before.

On November 12, Shiraz was also awarded the Infosys Foundation Prize in the physical sciences category. He was the youngest among this year’s winners.

I interviewed him over Skype for The Hindu (major hat-tip to Akshat Rathi), which is where this interview first appeared (on November 13, 2013). Shiraz had some important things to say, including the now-proverbial ‘the Indian elementary school system sucks’, and that India is anomalously strong in the arena of string theory research, although it doesn’t yet match up to the US’s output qualitatively, but that almost none of it happens in non-elite institutions.

Here we go.

Why do you work with string theory and quantum field theory? Why are you interested in these subjects?

Because it seems like one of the roads to completing one element of the unfinished task of physics. In the last century, there have been two big developments in physic. The quantum revolution, which established the language of quantum mechanics for dealing with physical systems, and the general theory of relativity, which established the dynamic nature of spacetime as reality in the world and realized it was responsible for gravity. These two paradigms have been incredibly successful in their domains of applicability. Quantum theory is ubiquitous in physics, and is also the basis for theories of elementary particle physics. The general relativity way of thinking has been successful with astrophysics and cosmology, i.e. successful at larger scales.

These paradigms have been individually confirmed and individually very successful, yet we have no way of putting them together, no single mathematically consistent framework. This is why I work with string theory and quantum field theory because I think it is the correct path to realize a unified quantum theory of gravity.

What’s the nature of your work that has snagged the New Horizons Prize? Could you describe it in simpler terms?

The context for this discussion is the AdS/CFT correspondence of string theory. AdS/CFT asserts that certain conformal quantum field theories admit a reformulation as higher dimensional theories of gravity under appropriate circumstances. Now it has long been expected that the dynamics of any quantum field theory reduces, under appropriate circumstances, to the equations of hydrodynamics. If you put these two statements together it should follow that Einstein’s equations of gravity reduce, under appropriate circumstances, to the equations of hydrodynamics.

My collaborators and I were able to directly verify this expectation. The equations of hydrodynamics that Einstein’s equations reduce have particular values of transport coefficients. And there was a surprise here. It turns out that the equations charged relativistic hydrodynamics that came out of this procedure were slightly different in form from those listed in textbooks on the subject, like the text of [Lev] Landau and [Evgeny] Lifshitz. The resolution of this apparent paradox was obtained by [Dam] Son and [Piotr] Surowka and in subsequent work, where it was demonstrated that the textbook expectations for the equations of hydrodynamics are incomplete. The correct equations sometimes have more terms, in agreement with our constructions.

The improved understanding of the equations of hydrodynamics is general in nature; it applies to all quantum field theories, including those like quantum chromodynamics that are of interest to real world experiments. I think this is a good (though minor) example of the impact of string theory on experiments. At our current stage of understanding of string theory, we can effectively do calculations only in particularly simple – particularly symmetric – theories. But we are able to analyse these theories very completely; do the calculations completely correctly. We can then use these calculations to test various general predictions about the behaviour of all quantum field theories. These expectations sometimes turn out to be incorrect. With the string calculations to guide you can then correct these predictions. The corrected general expectations then apply to all quantum field theories, not just those very symmetric ones that string theory is able to analyse in detail.

How do you see the Prize helping your research work? Does this make it easier for you to secure grants, etc.?

It pads my CV. [Laughs] So… anything I apply for henceforth becomes a little more likely to work out, but it won’t have a transformative impact on my career nor influence it in any way, frankly. It’s a great honour, of course. It makes me happy, it’s an encouragement. But I’m quite motivated without that. [After being asked about winning the Infosys Foundation Prize] I’m thrilled, but I’m also a little overwhelmed. I hope I live up to all the expectations. About being young – I hope this means that my best work is ahead of me.

What do you think about the Fundamental Physics Prize in general? About what Yuri Milner has done for the world of physics research?

Until last week, I hadn’t thought about it very much at all. The first thing to say is when Milner explained to me his motivations in constituting this prize, I understood it. Let me explain. As you know, Milner was a PhD student in physics before he left the field to invest in the Internet, etc. He said he left because he felt he wasn’t good enough to do important work.

He said one motivation was that people who are doing well needn’t found Internet companies. This is his personal opinion, one should respect that. Second: He felt that 70 or 80 years ago, physicists were celebrities who played a large role in motivating some young people to do science. Nowadays, there are no such people. I think I agree. Milner wants to do what he can to push the clock back on that. Third: Milner is uniquely well-positioned because he understands physics research because of his own background and he understands the world of business. So, he wanted to bridge these worlds. All these are reasonable ways of looking at the world.

If I had a lot of money, this isn’t the way I would have gone about it. There are many more efficient ways. For instance, more smaller prizes for younger people makes more sense than few big prizes for well established people. Some of the money could have gone as grants. I haven’t seriously thought about this, though. The fact is Milner didn’t have to do this but he did. It’s a good thing. This is his gesture, and I’m glad.

Are the Fundamental Physics Prizes in any way bringing “validity” to your areas of research? Are they bringing more favourable attention you wouldn’t have been able to get otherwise?

Well, of late, it has become fashionable sometimes to attack string theory in certain parts of the world of physics. In such an environment, it is nice to see there are other people who think differently.

What are your thoughts on the quality of physics research stemming from India? Are there enough opportunities for researchers at all levels of their careers?

Let me start with string theoretic work, which I’m aware of, and then extrapolate. String theory work done in India is pretty good. If you compared the output from India to the US, the work emerging from the US is way ahead qualitatively. But if you compared it to Japan’s output, I would say it’s clear that India does better. Japan has a large string theory community supported by American-style salaries whereas India runs on a shoestring. Given that and the fact that India is a very poor country, that’s quite remarkable. There’s no other country with a GDP per capita comparable to India’s whose string theoretic output is anywhere as good. In fact, the output is better than any country in the European Union, but at the same time not comparable to the EU’s as a whole. So you get an idea of the scale: reasonably good, not fantastic.

The striking weakness of research in India is that research happens by and large only in a few elite institutions. But in the last five years, it has been broadening out a bit. TIFR and the Harish-Chandra Research Institute [HRI] have good research groups; there are some reasonably good young groups in Indian Institute of Science [IIS], Bengaluru; Institute of Mathematical Sciences, Chennai; some small groups in the Chennai Mathematical Institute, IIT-Madras, IIT-Bombay, IIT-Kanpur, all growing in strength, The Indian Institute of Science Education and Research (IISER), Pune, has also made good hires in string theory.

So, it’s spreading out. The good thing is young people are being hired in many good places. What is striking is we don’t yet have participation from universities; there are no string theorists in non-elite institutions. Delhi University has a few, very few. This is in striking contrast with the US, where there are many groups in many universities, which gives the community great depth of research.

If I were to give Indian research a grade sheet, I’d say not bad but could do much better. There are 1.2 billion people in the country, so we should be producing commensurate output in research. We shouldn’t content ourselves by thinking we’re doing better than [South] Korea. Of course it is an unfair thing to ask for, but that should be the aim. For example, at TIFR, when we interview students for admission, we find that we usually have very few really good candidates. It’s not that they aren’t smart; people are smart everywhere. It’s just one reason: that the elementary school system in the country is abysmal. Most Indians come out of school unable to contribute meaningfully to any intellectual activity. Even Indian colleges have the same quality of output. The obvious thing is to make every school in India a reasonable school [laughs]. Such an obvious thing but we don’t do it.

Is there sufficient institutional and governmental support for researchers?

At the top levels, yes. I feel that places with the kind of rock-solid support that TIFR gives its faculty are few and far between. In the US many such places exist. But if you went to the UK, the only comparable places are perhaps Cambridge and Oxford. Whereas if you went to the second tier Durham University, you’ll see it’s not as good a place to be as TIFR. In fact, this is true for most universities around the world.

Institutions like TIFR, IIS, HRI and the National Centre for the Biological Sciences give good support and scientists should recognize this. There are few comparable places in the Third World. What we’re missing however is the depth. The US research community has got so good because of its depth. Genuine, exciting research is not done just in the Ivy League institutions. Even small places have a Nobel Laureate teaching there. So, India may have lots of universities but they are somehow not able to produce good work.

We’ve had a couple Indians already in what’s going to be three years of the Fundamental Physics Prizes – before you, there was Ashoke Sen. But in the Nobel Prizes in physics, we’ve had a stubborn no-show since Subramanyan Chandrasekhar won it in 1983. Why do you think that is?

There are two immediate responses. First is that, as I mentioned, India has an anomalously strong string theory presence. Why? I don’t know. India is especially strong with string theory. And the Fundamental Physics Prize Foundation has so far had some focus on this. The Nobel Prizes on the other hand require experimental verification of hypotheses. So, for as long as the Foundation has focused on the mathematics in physics, India has done well.

What are you going to do with your $100,000?

I haven’t seriously thought about it.

At the time of my interview, I had no idea he was about to win the Infosys Foundation Prize as well. It seems he’s in great demand! Good luck, Shiraz. 🙂

Why do we need dark matter?

The first thing that goes wrong whenever a new discovery is reported, an old one is invalidated, or some vaguely important scientific result is announced has often to do with misrepresentation in the mainstream media. Right now, we’re in the aftermath of one such event: the October 30 announcement of results from a very sensitive dark matter detector. The detector, called the Large Underground Xenon Experiment (LUX), is installed in the Black Hills of South Dakota and operated by the Sanford Underground Research Facility.

Often the case is that what gets scientists excited may not get the layman excited, too, unless the media wants it to. So also with the announcement of results from LUX:

  • The detector hasn’t found dark matter
  • It hasn’t found a particular particle that some scientists thought could be dark matter in a particular energy range
  • It hasn’t ruled out that some other particles could be dark matter.

Unfortunately, as Matt Strassler noted, the BBC gave its report on the announcement a very misleading headline. We’re nowhere near figuring out what dark matter is as much as we’re figuring out what dark matter isn’t. Both these aspects are important because once we know dark matter isn’t something, we can fix our theories and start looking for something else. As for what dark matter is… here goes.

What is dark matter?

Dark matter is a kind of matter that is thought to occupy a little more than 80 per cent of this universe.

Why is it called ‘dark matter’?

This kind of matter’s name has to do with a property that scientists believe it should have: it does not absorb or emit light, remaining (optically) dark to our search for it.

What is dark matter made of?

We don’t know. Scientists think it could be composed of strange particles. Some other scientists think it could be composed of known particles that are for some reason behaving differently. At the moment, the leading candidate is a particle called the WIMP (weakly interacting massive particle), just like particles called electrons are an indicator of there being an electric field or particles called Higgs bosons are an indicator of there being a Higgs field. A WIMP gets its name because it doesn’t interact with other matter particles except through the gravitational force.

We don’t know how heavy or light WIMPs are or even what each WIMP’s mass could be. So, using different detectors, scientists are combing through different mass-ranges. And by ‘combing’, what they’re doing is using extremely sensitive instruments hidden thousands of feet under rocky terrain (or obiting the planet in a satellite) in an environment so clean that even undesired particles cannot interact with the detector (to some extent). In this state, the detector remains on ‘full alert’ to note the faintest interactions its components have with certain particles in the atmosphere – such as WIMPs.

The LUX detector team, in its October 30 announcement, ruled out that WIMPs existed in the ~10 GeV/c2 mass range (because of a silence of its components trying to pick up some particles in that range). This is important because results from some other detectors around the world suggested that a WIMP could be found in this range.

Can we trust LUX’s result?

Pretty much but not entirely – like the case with most measurements in particle physics experiments. Physicists announcing these results are only saying they aren’t likely to be any other entities masquerading as what they’re looking for. It’s a chance, and never really 100 per cent. But you’ve got to draw the line at some point. Even if there’s always going to be a 0.000…01 per cent chance of something happening, the quantity of observations and the quality of the detector should give you an idea about when to move on.

Where are the other detectors looking for dark matter?

Some are in orbit, some are underground. Check out FermiLATAlpha Magnetic Spectrometer,Payload for Antimatter Exploration and Light-nuclei Astrophysics, XENON100, CDMSLarge Hadron ColliderCoGeNT, etc.

So how was BBC wrong with its headline?

We’re not nearing the final phase of the search for dark matter. We’re only starting to consider the possibility that WIMPs might not be the dark matter particle candidates we should be looking for. Time to look at other candidates like axions. Of course, it wasn’t just BBC. CBS and Popular Science got it wrong, too, together with a sprinkling of other news websites.

Why do we need dark matter?

We haven’t been able to directly detect it, we think it has certain (unverified) properties to explain why it evades detection, we don’t know what it’s made of, and we don’t really know where to look if we think we know what it’s made of. Why then do we still cling to the idea of there being dark matter in the universe, that too in amounts overwhelming ‘normal’ matter by almost five times?

Answer: Because it’s the simplest explanation we can come up with to explain certain anomalous phenomena that existing theories of physics can’t.

Phenomenon #1

When the universe was created in a Big Bang, matter was released into it and sound waves propagated through it as ripples. The early universe was very, very hot, and electrons hadn’t yet condensed and become bound with the matter. They freely scattered radiation, whose intensity was also affected by the sound waves around it.

About 380,000 years after the Bang, the universe cooled and electrons became bound to matter. After this event, some radiation pervading throughout the universe was left behind like residue, observable to this day. When scientists used their knowledge of these events and their properties to work backwards to the time of the Bang, they found that the amount of matter that should’ve carried all that sound didn’t match up with what we could account for today.

They attributed the rest to what they called dark matter.

Phenomenon #2

Another way this mass deficiency manifests is in the observation of gravitational lensing. When light from a distant object passes near a massive object, such as a galaxy or a cluster of galaxies, their gravitational pull bends the light around them. When this bent beam reaches an observer on Earth, the image it carries will appear larger because it will have undergone angular magnification. If these clusters didn’t contain dark matter, physicists would observer much weaker lensing than they actually do.

Phenomenon #3

That’s not all. The stars in a galaxy rotate around the galactic centre, where most of its mass is located. According to theory, the velocity of the stars in a galaxy should drop off the farther they get from the centre. However, observations have revealed that, instead of dropping off, the velocity is actually almost constant even as one gets farther from the centre. So, something is also pulling the outermost stars inward, holding them together and keeping them from flying outward and away from the galaxy. This inward force astrophysicists think could be the gravitational force due to dark matter.

So… what next?

LUX was a very high sensitivity dark matter detector, the most sensitive in existence actually. However, its sensitivity is attuned to look for low-mass WIMPs, and its first results rule out anything in the 5-20 GeV/c2 range. WIMPs of a higher mass are still a possibility, and, who knows, might be found at detectors that work with the CERN collider.

Moreover, agreement between various detectors about the mass of WIMPs has also been iffy. For example, detectors like CDMS and CoGeNT have hinted that a ~10 GeV/c2 WIMP should exist. LUX has only now ruled this out; the XENON100 detector, on the other hand, has been around since 2008 and has been unable to find WIMPs in this mass-range altogether, and it’s more sensitive than CDMS or CoGeNT.

What’s next is some waiting and letting the LUX carry on with its surveys. In fact, the LUX has its peak sensitivity at 33 GeV/c2. Maybe there’s something there. Another thing to keep in mind is that we’ve only just started looking for dark matter particles. Remember how long it took us to figure out ‘normal’ matter particles? Perhaps future higher sensitive detectors (like XENON1T and LUX-ZEPLIN) have something for us.

(This post first appeared at The Copernican on November 3, 2013.)